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Abstract. Many methods currently used in combinatorial optimization

are inspired by adaptative natural behaviors or natural systems, e.g.

hill-climbing local search, genetic algorithms, simulated annealing, : : :
These heuristics provide some very good results, even when the problem

size makes it impossible to use more traditional exact methods (such as

branch and bound, ...). Ants system algorithms belong to this class of
adaptive or evolutionnary \nature inspired" algorithms, and are based

on the natural behavior of ants. These algorithms have been applied suc-

cessfully to many optimisation problems like travelling salesman (TSP),
job shop scheduling (JSP), graph colouring, quadratic assignment prob-

lem (QAP), : : :
This paper presents ANTabu, an ants system algorithm for the QAP. We

have designed ANTabu with a parallel model, thus allowing it to take

advantage of the power of networks of workstations. The co-operation
between simulated ants is provided by a pheromone matrix that plays

the role of a global memory, with a re�ned pheromone update mecha-

nism. The exploration of the search space is guided by the evolution of
pheromones level, while exploitation has been boosted by a tabu local

search. Special care has also been taken in the design of a diversi�cation

phase, based on a frequency matrix. We give results that have been ob-
tained on benchmarks instances from the QAPlib1. We show that they

compare favourably with other top of the art algorithms dedicated for

the QAP.

Keywords : Ants Systems, Quadratic Assignment Problem, Tabu search,

Parallelism, Pheromone trails, Global memory.

1 Introduction

1.1 The Quadratic Assignment Problem

The QAP is a combinatorial optimization problem, �rst described by Koopmans
and Beckmann in [KB57]. It consists in �nding the best assignment of n facil-
ities to n locations at minimum cost. There are several QAP applications like

1 http ://fmatbhp1.tu-graz.ac.at/%7Ekarisch/qaplib/



arrangement of departments in hospitals, minimization of the total wire length
in electronic circuits...

This problem can be formally described as follows :

Given two n�n symetric matricesD and C, where D is the inter-city distance
matrix and C the inter-city 
ow matrix, �nd a permutation �

� minimizing the
objective function f :

min
p2�(n)

f(p) =

nX

i=1

nX

j=1

dijcpipj

where :

p is a permutation.

pi is the i
th element of p.

�(n) is the set of all permutations of n elements.

di;j is the distance between objects i and j (i.e. an element of D).

ca;b is the cost of 
ow between positions a and b (i.e. an element of C).

Thus a solution is an integer permutation, with an element of the permutation
being an object number and its position within the permutation being the object
location.

The QAP is a NP-hard problem and �nding an " approximation to this
problem is known to be NP-complete [SG76], so problems of size larger than
20 are still considered as intractable for exact methods. Several heuristics have

been proposed for �nding near-optimum solutions to large instances, see [Con90],
[SK90], [Tai91], [BT94], [FF94], [BPT96], [HTG96], [SV96], [CMMT97], [MF97],

[GTD98], [THG97]. We compare our results with those from oome of these meth-
ods in the next sections of this paper.

1.2 Ants and ants systems

The ants based algorithms were introduced in Marco Dorigo's PhD [Dor92].
They are inspired by the observation that, using very simple communication

mechanisms, an ant group is able to �nd the shortest path between any two
points. During their trips a chemical trail (pheromone) is left on the ground.
The role of this trail is to guide the other ants towards the target point.

For one ant, the path is chosen accordingly to the quantity of pheromone.
Furthermore, this chemical substance has a decreasing action over time, and the
quantity left by one ant depends on the amount of food found. As illustrated in
Fig. 1, when facing an obstacle, there is an equal probability for every ant to
choose the left or right path. As the left trail is shorter and so requires less travel
time, it will end up with a higher level of pheromone after many ants passages
thus being more and more attractive. This fact will be increased by pheromone
evaporation.



Fig. 1. Ants facing an obstacle

This subtle principle of communication has been used as a guideline for the
design of heuristics dedicated to some combinatorial optimization problems, no-
tably the TSP in [DMC96,GD95,DG96], vehicule routing problems [BHS97],
load balancing in communication networks [CD97], real functions optimiza-
tion [BP95], graph coloring problems [CH97], : : : Several works have also been
targeted at the QAP, for example St�uzle's Min-Max algorithm [St�u97], or Gam-
berdella et al.'s HAS-QAP [GTD98].

1.3 A brief overview of this paper

In the following sections, we will �rst introduce the ANTabu algorithm, stress-
ing the original points that make it di�er from previous typical ants systems.

Then we will review numerical results obtained on a set of instances from the
QAPlib [BKR97], whose sizes range from 20 up to 100. We compare our results
with those from a wide set of publications in the �eld of meta-heuristics for the

QAP. We discuss the di�erence in results for regular and irregular instances. At
last, we conclude and propose possible ways for future works.

2 ANTabu

The main advantage of ants sytems is to simulate a global memory. It thus allows

to build a knowledge base on already visited sites and this in a stochastic way.
The more an element is found in good solutions, the more likely it is supposed to
be part of the optimal solution. The evaporation phenomenon helps in avoiding
premature convergence to a local optimum.

2.1 ANTabu scheme

ANTabu is based on the co-operation of two methods (the Ants system and the
Tabu algorithm). The general outline of our method is presented in Fig. 2.

First of all, initialization of pheromone matrix is made with an arbitrary value
�0 proportional to a good solution. This solution is obtained after optimization



1) Initializations

1a) Generate m (ant number) permutations pk with (1 � k � m), of

length n

1b) Pheromone matrix initialization

1b1) apply local search on permutation

1b2) Select the best solution : p
�

1b3) Pheromone matrix initialization F

1c) Initialization of frequency matrix to 0
1d) intensification is true

2) FOR i = 1 to I
max

2a) FOR each permutation pk (1 � k � m)
2a1) n=3 guided swaps by pheromone matrix : result is p̂k

2a2) Apply Tabu search (p̂k gives ~pk)
2b) IF each f(~pk) � f(pk)

THEN intensification is false

2c) FOR each ants (k)

IF intensification is true AND f(~pk) > f(pk)
THEN solution comes back to pk

else pk = ~pk
2d) IF ~pk < p

� for at least one ant k

THEN update the best solution found so far p
�
and

intensification is true

2e) Update the pheromone matrix with all solutions

2f) Update the fequency matrix

2g) IF n=2 iterations since the last update of p
�

THEN diversification generate new solutions with

frequency matrix

Fig. 2. ANTabu algorithm

of random solutions. During the run of the ANTabu algorithm, this matrix will
be updated by solutions provided by the ants.

Each ant applies some swaps to its solution, these swaps are only guided by
the pheromone matrix. This operation gives a preliminary solution. The local
search method (Tabu algorithm) will be then applied to these solutions. Note
that in our implementation we have restricted the Tabu method to a limited

number of steps, to avoid premature convergence.

These solutions are then provided to the pheromone matrix update proce-
dure. This is a two phases procedure:

{ an evoparation scheme is applied (i.e the values of the pheromone matrix
are decreased)

{ each solution will be used to update the matrix (i.e. reinforcement of the
assignements found in solutions), but see details in the next subsection.

At this step, ANTabu may either enter in an intensi�cation phase if the
best previous solution is improved, or in a diversi�cation phase if there is no
improvement after some iterations.



2.2 A closer look at global memory management

Most ants algorithms only take into account the best solution found so far for
updating the pheromone matrix.We have devised a new strategy where each ant
adds a contribution proportional to its �tness value (the better the solution, the
higher the contribution). This contribution is weakened by dividing the di�erence
between the solution and the worst one with the best one. So far, the new update
formulae are :

{ for all matrice values :

8i; j 2 [1; n]; � g
i;j

= (1� �)� g�1
i;j

{ for all solutions p of one iteration :

p 2 P
g
; 8i; j 2 [1; n]; �

g

i;j
= �

g

i;j
+

�

f(p)

f(p�)� f(p)

f(p�)

f is the objective function.

i is the position in the solution and j is the value.

�
g

i;j
is the pheromone trail value at the gth iteration in position i; j.

p
� is the worst solution found so far.

p
� the best one.

P
g is the set of solutions at the g

th iteration.

The diversi�cation strategy of the ANTabu algorithm tries to focus on un-
explored areas. Instead of re-initializing the pheromone matrix and randomly

generating new solutions, ANTabu uses a frequency matrix. This matrix holds
frequencies for all previous assignments, and is used when a diversi�cation phase
is triggered. During the diversi�cation phase, least chosen a�ectations are chosen
to generate new solutions. This diversi�cation scheme will force the ants system
to start from totally new solutions with new structures.

2.3 Parallel implementation

The ANTabu has been parallelized for heterogeneous networks, each ant being
run by a host when possible. In order to take advantage of the parallel architec-
ture, we have built an asynchronous program. In such a case, an idle host will
be provided with a new ant to work with.

The master receives informations fromants. Based on these results, pheromone
matrix and frequency matrix are updated asynchronously.

Slaves/ants receive a new solution from the master with the updated pheromone
matrix. For each ant, an iteration consists in building a new solution, improving
it using the Tabu search method and sending it back to the master. Note that
in our asynchronous implementation no host stays idle for a long time.



Fig. 3. Parallel model

3 Numerical results

In all our experiments, we have been working with a population of 10 ants. The
experiments found in the �rst two tables (see Tab. 1 and Tab. 2) were run on
a network of 10 Silicon Graphics Indy workstations. The other results in Tab. 3

and Tab. 4 were run on a network composed of 3 PC (PII 300). Unless otherwise
stated, the values we give are averaged on ten independent executions.

We �rst compare ANTabu with HAS-QAP [GTD97], an ants system, and
then we compare it with PATS [THG97], a parallel Tabu search. These two
algorithms are known to provide top of the art results for the QAP, so this allows
us to discuss the relative gains brought on one hand from ants cooperation, on
the other hand from Tabu local search. Then we extend the range of competitors

to a wider set of methods.

When comparing with other heuristics, the reader should notice that it is

almost impossible to use the same experimental setting (e.g. machine, machine
load, compiler e�ciency, algorithm coding, : : : ) than other authors. Nonetheless,
in order to provide a minimal guideline for comparison, we have used the same
computing time, when time data are available.



3.1 Comparisons with HAS-QAP and PATS

We have selected 12 problems from the QAPlib [BKR97] either from the ir-
regular class problems (bur26d, bur26b, chr25a, els19, kra30a, tai20b,

tai35b) or from the regular class problems (nug30, sko42, sko64, tai25a

and wil50).

The parameters are : 10 iterations for each of our 10 ants (similar to those
for HAS-QAP), with a Tabu search restricted to 5n iterations, and a pheromon
evaporation rate of � = 0:1. Results are shown in Tab. 1, those for HAS-QAP
are taken straight from [GTD97], best �gures are in boldface. The di�erence rel-
atively to the QAPlib optimum is given as a percentage gap for both algorithms.

Table 1. Quality of HAS-QAP and ANTabu. Best results are in boldface.

Problem Name Best known HAS-QAP ANTabu

bur26b 3817852 0:106 0.018

bur26d 3821225 0:002 0.0002

chr25a 3796 15:69 0.047

els19 17212548 0:923 0

kra30a 88900 1:664 0.208

tai20b 122455319 0:243 0

tai35b 283315445 0:343 0.1333

nug30a 6124 0:565 0.029

sko42 15812 0:654 0.076

sko64 48498 0:504 0.156

tai25a 1167256 2:527 0.843

wil50 48816 0:211 0.066

It is clear that ANTabu outperforms HAS-QAP. Nonetheless we may won-

der if ants are of any use in improving the performance we expect from the
Tabu part of our algorithm. This has led us to the following comparison with
PATS [THG97], which consists in a set of Tabus running in a distributed fashion

on a network of workstations (including Intel PCs, Sun and Alpha workstations).
The load of each workstation is monitored and Tabus are automatically launched
on idle machines and stopped on busy ones, using the MARS operating system
layer [HTG96].

For this comparison, we have studied instances from two classes of problems :

{ one instance with random uniform cost and distance matrices : tai100a

{ a set of instances with random cost matrix : sko100a, sko100b, sko100c,

sko100d, wil100

Results are shown in Table 2. Best found for PATS and ANTabu is the best
solution out of ten runs. Running times are in minutes, and correspond to the
mean execution time over 10 runs on a 126 machines network for PATS, and on



a 10 machines network for ANTabu (thus the ANTabu algorithm was at a great
disadvantage in this regard).

Table 2. Compared results from PATS and ANTabu. Best results are in boldface

tai100a sko100a sko100b sko100c sko100d wil100

QAPlib

Best known 21125314 152002 153890 147862 149576 273038

PATS

Best found 21193246 152036 153914 147862 149610 273074

Gap 0.322 0.022 0.016 0 0.023 0.013

Time 117 142 155 132 152 389

ANTabu

Best found 21184062 152002 153890 147862 149578 273054

Gap 0.278 0 0 0 0.001 0.006

Time 139 137 139 137 201 139

Results show that the ANTabu system �nds better results using less com-
puting resources (see experimental setting in the above paragraph). Notice that
best known solutions have been found in three out of four sko100 instances.

3.2 Comparisons with a wider set of algorithms

In this section ANTabu is compared with:

{ the reactive tabu search (RTS) from Battiti and Tecchiolli [BT94]
{ the tabu search (TT) from Taillard [Tai91]
{ the genetic hybrid method (GH) from Fleurent and Ferland [FF94]
{ the simulated annealing (SA) from Connolly [Con90]
{ the HAS-QAP, previously cited, from Gambardella et al., but with a com-
puting time extended to 100 iterations for each of the 10 ants. Again, results
are taken from [GTD98].

It has been shown in [Tai95] that these methods do not have the same e�ec-
tiveness according to whether they are applied to so-called regular or irregular
instances, where regular instances have a 
ow dominance lower than 1.2 as op-
posed to irregular ones which are also sometimes called \structured" instances.

Results for regular instances are shown in Tab. 3. It is clear that ANTabu
dominates the scene.

Next we have compared those algorithms on a set of 20 irregular instances
ranging from n=10 locations to n=80. Results are in Tab. 4. In this case best
results are obtained by HAS-QAP, which found best average �tness for a set of
sixteen instances. ANTabu found the best average for only thirteen instances.



Table 3. Compared results on regular instances with the same computing time. Best
results are in boldface. Values are the average of gap between solution value and best

known value in percent over ten runs.

Problem n Best known TT RTS SA GH HAS-QAP ANTabu Seconds

name value

nug20 20 2570 0 0.911 0.070 0 0 0 30

nug30 30 6124 0.032 0.872 0.121 0.007 0.098 0 83

sko42 42 15812 0.039 1.116 0.114 0.003 0.076 0 248

sko49 49 23386 0.062 0.978 0.133 0.040 0.141 0.038 415

sko56 56 34458 0.080 1.082 0.110 0.060 0.101 0.002 639

sko64 64 48498 0.064 0.861 0.095 0.092 0.129 0.001 974

sko72 72 66256 0.148 0.948 0.178 0.143 0.277 0.074 1415

sko81 81 90998 0.098 0.880 0.206 0.136 0.144 0.048 2041

sko90 90 115534 0.169 0.748 0.227 0.196 0.231 0.105 2825

tai20a 20 703482 0.211 0.246 0.716 0.268 0.675 0 26

tai25a 25 1167256 0.510 0.345 1.002 0.629 1.189 0.736 50

tai30a 30 1818146 0.340 0.286 0.907 0.439 1.311 0.018 87

tai35a 35 2422002 0.757 0.355 1.345 0.698 1.762 0.215 145

tai40a 40 3139370 1.006 0.623 1.307 0.884 1.989 0.442 224

tai50a 50 4941410 1.145 0.834 1.539 1.049 2.800 0.781 467

tai60a 60 7208572 1.270 0.831 1.395 1.159 3.070 0.919 820

tai80a 80 13557864 0.854 0.467 0.995 0.796 2.689 0.663 2045

wil50 50 48816 0.041 0.504 0.061 0.032 0.061 0.008 441



In an attempt to understand the reasons behind this di�erence in behavior
between regular and irregular instances, we have also monitored not only average
results but also best and worst ones. These data are shown in Tab. 5. Notice that
an optimal solution is found at least once in ten runs for almost all problems.
Thus we think that the slightly low average from Tab. 4 could be due to low
quality local optima that are found after some unlucky diversi�cation phase. It
may well be the price to pay for a more complete exploration of the search space.

Table 4. Compared results on iregular instances with the same computing time. Best

results are in boldface. Values are the average of gap between solution value and best

known value in percent over ten runs.

Problem n Best known TT RTS SA GH HAS-QAP ANTabu Seconds

name value

bur26a 26 5426670 0.0004 - 0.1411 0.0120 0 0 50

bur26b 26 3817852 0.0032 - 0.1828 0.0219 0 0.0169 50

bur26c 26 5426795 0.0004 - 0.0742 0 0 0 50

bur26d 26 3821225 0.0015 - 0.0056 0.0002 0 0 50

bur26e 26 5386879 0 - 0.1238 0 0 0 50

bur26f 26 3782044 0.0007 - 0.1579 0 0 0 50

bur26g 26 10117172 0.0003 - 0.1688 0 0 0 50

bur26h 26 7098658 0.0027 - 0.1268 0.0003 0 0 50

chr25a 25 3796 6.9652 9.8894 12.4973 2.6923 3.0822 0.8957 40

els19 19 17212548 0 0.0899 18.5385 0 0 0 20

kra30a 30 88900 0.4702 2.0079 1.4657 0.1338 0.6299 0.2677 76

kra30b 30 91420 0.0591 0.7121 0.1947 0.0536 0.0711 0 86

tai20b 20 122455319 0 - 6.7298 0 0.0905 0 27

tai25b 25 344355646 0.0072 - 1.1215 0 0 0 50

tai30b 30 637117113 0.0547 - 4.4075 0.0003 0 0 90

tai35b 35 283315445 0.1777 - 3.1746 0.1067 0.0256 0.0408 147

tai40b 40 637250948 0.2082 - 4.5646 0.2109 0 0.4640 240

tai50b 50 458821517 0.2943 - 0.8107 0.2142 0.1916 0.2531 480

tai60b 60 608215054 0.3904 - 2.1373 0.2905 0.0483 0.2752 855

tai80b 80 818415043 1.4354 - 1.4386 0.8286 0.6670 0.7185 2073

4 Conclusions

In this paper we have proposed a powerful and robust algorithm for the QAP
resolution, based on the hybridization of a Tabu search and an ants system.
Compared with previous ants systems for the QAP, we have re�ned the ants
cooperation mechanism, both in the pheromone matrix update phase and in the
exploitation/diversi�cation phase (using a frequency matrix). We have chosen
the Tabu as a local search method, thus demonstrating that it is possible to



Table 5. Best and worst results on ten runs on irregular instances for ANTabu.Values

are gaps between solution value and best known value in percent. Notice that an optimal

solution is found in all but one problems.

Problem Average Seconds Worst Best

bur26a 0.0000 50 0.0000 0.0000

bur26b 0.0169 50 0.1693 0.0000

bur26c 0.0000 50 0.0000 0.0000

bur26d 0.0000 50 0.0000 0.0000

bur26e 0.0000 50 0.0000 0.0000

bur26f 0.0000 50 0.0000 0.0000

bur26g 0.0000 50 0.0000 0.0000

bur26h 0.0000 50 0.0000 0.0000

chr25a 0.8957 40 4.5838 0.0000

els19 0.0000 20 0.0000 0.0000

kra30a 0.2677 76 1.3386 0.0000

kra30b 0.0000 86 0.0000 0.0000

tai20b 0.0000 27 0.0000 0.0000

tai25b 0.0000 50 0.0000 0.0000

tai30b 0.0000 91 0.0000 0.0000

tai35b 0.0408 148 0.2212 0.0000

tai40b 0.4640 241 2.6239 0.0000

tai50b 0.2531 486 0.9075 0.0000

tai60b 0.2752 860 1.5608 0.0000

tai80b 0.7185 2091 1.8549 0.0019



use a powerful local search without being hindered by disproportionate over-
heads. Results show interesting performances, coming from the complementary
gains brought by the mixed use of parallelism, e�cient local search and ants-
like cooperation. The comparison with the PATS algorithm pleads for a more
widely spread use of inter-process communication in parallel heuristics. Future
works include �nding a better tuning of parameters and porting under MARS
to allow runs on large heterogeneous networks. We are also interested in inves-
tigating more closely on the impact of the diversi�cation phase, and in leading
a �ner study on the conditions needed for appearance of a fruitful cooperation
in parallel agents systems.
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