
Improving Exact Integrals From

Symbolic Algebra Systems

Richard J. Fateman and W. Kahan
University of California, Berkeley

July 18, 2000

Abstract

Programs in symbolic algebraic manipulation systems can compute
certain classes of symbolic indefinite integrals in closed form. Although
these answers are ordinarily formally correct algebraic anti-derivatives,
their form is often unsuitable for further numerical or even analytical pro-
cessing. In particular, we address cases in which such “exact answers”
when numerically evaluated may give less-accurate answers than numeri-
cal approximations from first principles! The symbolic formulas may also
behave inappropriately near singularities. We discuss techniques, based
in part on the calculus of divided differences, for improving the form of
results of symbolic mathematics systems. In particular, computer alge-
bra systems must take explicit account of the possibility that they are
producing not “mathematics” but templates of programs consisting of se-
quences of arithmetic operations. In brief, mathematical correctness is
not enough. Forms produced by rational integration programs are used
for examples.

Introduction

The naive approach to the calculation of a definite integral
∫ y

x
f(z)dz entails

two steps: the first is the construction of the symbolic anti-derivative, F (z) :=∫
f(z)dz, and the second is the evaluation of F (y) − F (x). This approach

is feasible only for very special integrands f(z), those for which F (z) exists
in closed form. For most f(z), the integral must be approximated either by
numerical quadrature, a process based upon weighted averaging of numerical
samples of f(z), or else by some kind of series expansion. Therefore the special
case when a primitive F exists in closed form offers some hope that the integral
can be calculated exactly, or at least more accurately than if an approximate
method had to be chosen from the start.

In fact the ostensibly exact methods, including those used by symbolic in-
tegration programs (as in, for example, Mathematica, Maple, Macsyma, Axiom
Reduce, Mupad etc. See [2] p. 221-243 for a survey), may produce answers,

1

which, when ultimately reduced to numeric values, are less accurate than the
approximate methods.

We assume from this point on that the formula for F (z) will be evaluated in
floating-point rather than exact (rational) arithmetic. Two hazards can degrade
accuracy First, the formula for F (z) may suffer from numerical instability unless
it is rearranged in a way that takes account of the range of values intended for
its argument z. Second, when the limits of integration z = x and z = y are
relatively close, F (y) − F (x) may mostly cancel off, leaving little more than
rounding errors after the subtraction.

There is a third hazard that is independent of accuracy: sometimes F (z) is
so much more complicated than f(z) that a quadrature program is preferable
to direct evaluation. One example[9] is f(x) = 1/(1 + z64) whose integral is

F (z) =
1
32

16∑
k=1

ck arctanh
(

2ck
z + 1/z

)
− sk arctan

(
2sk

z − 1/z

)
where ck := cos((2k − 1)π/64) and sk := sin((2k − 1)π/64).

Nothing much can be done about this third hazard, and it is unfortunate
that symbolic integration programs may unwittingly assist in the production of
even more expensive monstrosities.

The second hazard, and often the first too, can be mitigated with the aid of
systematic techniques drawn from the Calculus of Finite Differences; see [15].
This calculus manipulates divided differences like

4⊥F ([x, y]) :=
{

(F (y)− F (x)) /(y − x) if x 6= y
F ′(x) if x = y

according to rules that resemble the chain rule, product and quotient rules,
inverse and implicit function rules, etc., familiar in the calculus of derivatives.
The resemblance is most striking when the argument z of F (z) is a scalar, not a
vector. Scalar divided differences, like derivatives, operate upon functions with-
out raising their level of transcendence; the divided difference of a polynomial
is a polynomial, of a rational function is rational, of an algebraic function is al-
gebraic, of an elementary transcendental function is elementary, albeit with one
more argument than before. In view of that resemblance, it may seem strange
that computerized symbolic algebra systems, already so adept at simplification,
differentiation and even integration, do not cater to divided differences. There
is a reason for this.

Although the derivative of a function is not often much more complicated
than that function, the divided difference is usually at least about twice as
complicated and often much worse. Consequently, explicit divided differences
reward human inspection far less often than derivatives do. Therefore there is
little incentive to transform displayed expressions into their divided differences.
Instead, divided differences pay off best when they are implicit in algorithms
which then can operate upon numbers or expressions unseen by human eyes.

In other words, divided differences may well be thought of as transformations
performed during a code-generation phase by computerized symbolic calcula-

2

tions, upon the symbolic representation of a program, to enhance its numerical
stability. That is why programs to compute F (y) − F (x) accurately might be
expected to take special forms derived from the calculus of divided differences
even though explicit divided difference expressions never appear.

The application of divided differencing to the evaluation of integrals from
explicit symbolic formulas produced by computer algebra systems is therefore
natural, and can enhance accuracy substantially without much extra computa-
tion.

In what follows, we present examples illustrating how the divided differ-
ence calculus succeeds in transforming numerically unsatisfactory expressions
for definite integrals into algebraically equivalent but numerically satisfactory
expressions and algorithms. The intent of the examples is to stimulate appreci-
ation for and further study of that calculus; a detailed treatment of the subject
must be sought elsewhere.

We do not provide a complete algorithm for the resolution of all accuracy
problems that can result from integration. In fact, forms for divided differences
of higher functions (even trigonometric forms or rational functions of vector
arguments) require the introduction of classes of new non-elementary functions
defined by integrals.

The techniques shown below work for integrals of polynomial and rational
functions, and can be generalized in particular instances, to larger classes. A
“universal” automated resolution is not in sight.

Integration Programs

To be specific in this paper we will present programs fragments in the language
of the Macsyma computer algebra system (CAS) although other systems men-
tioned in the introduction are approximately equivalent for this purpose and
could be used instead.

What is Provided by a CAS?

In Macsyma, the command integrate(f(x), x) invokes an algorithm which is
intended to deliver the integral in closed form. That is, it is designed to produce
an anti-derivative F (x) of the function f(x), or some indication of “failure”. The
computed anti-derivative F (x) has the property that computing its derivative
brings us back to f(x) or something which can be simplified (often, but not
always, by the CAS) to f(x).

The definite integration program is invoked in a similar fashion, by the
integrate command, but with two additional arguments, the lower and upper
bounds. That is, integrate(f(x), x, a, b) returns an expression which should
be the moral equivalent of F (b)−F (a) in the usual circumstances. In some cases
this simple formula does not work, but Macsyma is able to do the integral by
contour integration or other methods. In the case of definite integration, failure

3

is signalled by responses like the return of the requested integral unaltered in
form, or the message “divergent.”

What is Needed?

Unless the answer is very simple, more processing will be needed. Many users
will proceed to put the formula from the CAS through additional steps. It is pos-
sible that repeated evaluation of some sort will be needed for plotting, or for ap-
proximation of higher-order integrals. For such purposes we would like to see not
F (x), a mathematical formula, but a computer function Integral of f(a,b),
an efficient and accurate value-returning procedure of two numerical arguments
that provides an approximation to F (b) − F (a) or its moral equivalent. A
successful program Integral of f avoids disastrous numerical errors such as
division by zero, minimizes loss of accuracy to cancellation, and promotes an
efficient order of calculation.

There have been several papers recently on the combined use of symbolic
and numeric processing [3, 4, 5, 7]. Two papers ([4, 5]) provide a bare-bones
numeric/symbolic integrator for rational functions of a single variable. Such a
program, using hardly more mechanism than an accurate polynomial zero-finder
and simple arithmetic on polynomials, produces a reasonable approximate-
algebraic answer: a rational function plus logarithms using floating-point ap-
proximations. In some ways it is more powerful than Macsyma’s built-in inte-
gration program because it is not stymied by irreducible denominators of too
high a degree. However, the answer is a poor computer function, even after
mechanical conversion to FORTRAN, because no particular attention has been
paid to accuracy or efficiency.

Demonstrating the formation of better Integral of f functions with the aid
of divided differences is the primary objective here; in the appendix we show
that a number of additional tasks must be discharged to completely analyze an
integral.

Integration of Rational Functions

As is well known, indefinite integrals of rational functions are expressible as
sums of polynomials, rational functions, logarithms of rational functions and
perhaps arctangents, using as a base field algebraic number extensions.

We will assume that any algebraic numbers which appear in our problem
can be approximated satisfactorily by floating point numbers, although this
necessity does not arise in our examples here.

We trace the problems through a sequence of what appear to be trivial exam-
ples. They illustrate the problems quite well, however, and can be generalized
without difficulty to cover all of rational function integrations.

Example 1:

4

Consider

I :=
∫ b

a

1
t2 + 1

dt = arctan b− arctan a.

Unfortunately, the obvious formula for computing this, namely

q := arctan b− arctan a,

is neither accurate nor particularly fast.
Consider instead

r := arctan
(
b− a
1 + ab

)
.

The formulas q and r are mathematically equivalent provided that 1+ab > 0;
otherwise q− r = sign(b)π. However, the formula for r trades the computation
of one arctangent for three arithmetic operations, and so computing r is likely
to be faster. A more important consideration may be the fact that q and r
differ significantly in numerical properties when a is relatively close to b. In
particular, using 16 decimal digits (IEEE 754 double precision) let a=5.0× 107,
b = a + 1; then q = 4.44 . . . × 10−16, r = 3.99 . . . × 10−16. As it happens, q
is wrong in even the first digit, but r is good to about 16 digits. The trouble
with q is that cancellation leaves nothing but the rounding errors in the two
arctangents. In r, the cancellation is harmless.

Before leaving this example, we point out there is another hazard in such
integration formulas, whether expressed as the difference of arctangents or our
form: you may provide an incorrect integral by incorrect choice of branches
of the artangent function. Moritsugu [16] points this out with the following
example: If we differentiate the expression

f = arctan(
x3 − 4x
x2 − 1

)

we find the answer is

d =
df

dx
=

x4 + x2 + 4
x6 − 7x4 + 14x2 + 1

.

A sufficiently powerful algorithmic attack on algebraically integrating the ra-
tional function d could hardly do much better than f . Therefore, one might
falsely conclude that we could compute the integral of d with respect to x from
-2 to 2 by substituting the values -2 and 2 into f , and computing the difference.
Those values are each 0, so the integral computed this way would be 0: yet d
is strictly positive in that interval. (A proof: Algebraically, the numerator of
d is clearly positive, and the denominator is expressible as a sum of squares:
(x2 − 1)2 + (x3 − 4x)2.) The problem is that you, or the integration program,
must notice that f , although bounded, is discontinuous in the range of integra-
tion (specifically at -1 and 1). In fact, a correct choice of branches for the arctan
function shows that the area under the curve is 2π. Computation with divided
differences will not guarantee correct branch choices.

5

Example 2:
Consider ∫ b

a

1
t
dt = log b− log a.

Let a = 1.0× 1014 , b = a+ 1. Using IEEE 754 double precision, we directly
compute log(b) − log(a) = 7.105427357601002 × 10−15. We can also directly
compute log(b/a) = 9.992007221626359× 10−15. And we can directly compute
from either formula below the answer 9.99999999999995×10−15 which is correct
to all 16 digits.

/*dlog(b,a) returns an accurate value for
log(b)-log(a), a,b > 0*/

dlog(x,y):=block([z,r,w],
z:(x-y)/y,
r:1+z,
if r=1 then w:1 else w:log(r)/(r-1),
return(w*z))$

pol
If an accurate arctanh routine is available, the best that can be done is

dlog(x,y):= if (x/y < 0.5) or (2 < x/y)
then log(x/y)
else 2*atanh((x-y)/(x+y))$

Example 3:
Integration of a polynomial f(x) simply results in another polynomial F (x) =∫

f(x)dx. Once again, the obvious way to compute
∫ b

a
f(x)dx = F (b) − F (a)

would be to compute F (b) and F (a) separately and then subtract. But if a and
b are floating-point numbers relatively close to one another, the obvious way is
likely to be an inaccurate way.

Below we provide a few simple Macsyma programs for dealing with a poly-
nomial p expressed as an array of coefficients. The program p evaluates the
polynomial, dp1 computes the divided difference of p, poly2array converts the
usual infix notation for a polynomial into an array of coefficients, and finally, dp
puts these pieces together. Given a polynomial p(z) := a0z

n +a1z
n−1 + · · ·+an,

dp first places the coefficients {ai} of p(z) in an array %a, then computes a di-
vided difference dp1(x,y,%a,n) where n= degree(p,z). This result is then mul-
tiplied by (x− y) to obtain a value for p(x)− p(y). However, the arrangement
of calculations in dp makes the last operation a multiplication rather than an
addition or subtraction, promoting accuracy.

/* The program p evaluates a polynomial.
"a" is the array of coefficients,
x is the point for evaluation,

6

n >= 0 is the degree of the polynomial */
p(x,a,n):=
block([p:0,j],

for j:0 thru n do (p:x*p+a[j]),
p)$

/* The program dp1 evaluates (p(x,a,n)-p(y,a,n))/(x-y) */
dp1(x,y,a,n):=
block([d:0,p:0,j],

for j:0 thru n-1 do (p:x*p+a[j], d:y*d+p),
d)$

poly2array(p,x):=
block([n:hipow(p,x),i],

/* allocate n+1 elements: %a[0] thru %a[n] */
array(%a,n+1),

for i:0 thru n do %a[n-i]:ratcoef(p,x,i),
%a)$

/* dp(x,y,p) evaluates p(x)-p(y) accurately, given p=p(z) */
dp(x,y,p):= (x-y)*dp1(x,y,poly2array(p,z),hipow(p,z))$

Since the program works as well for polynomials with symbolic expressions
as coefficients, we can try it out. In fact, dp(x, y, az2 + bz + c) evaluates to
(x− y) (a y + a x+ b).

In the spirit of using divided differences within the context of automatic
symbol manipulation, the reader should notice the resemblances between the
programs p and dp1. One might (correctly) conclude that “automatic program-
ming” of dp1 from p could be done by symbol manipulation.

We can test some polynomials for accuracy. Consider the polynomial of
degree 10:

p(z) := z · (z − 1) · (z − 2) · (z − 3) · (· · ·) · (z − 8) · (z − 9)
= (((((((((z − 45) · z + 870) · z − 9450) · z + 63273) · z − 269325)
·z + 723680) · z − 1172700) · z + 1026576) · z − 362880) · z

and suppose we wish to compute

4⊥p([x, y]) :=
p(x)− p(y)
x− y

for numerical values x and y very close together. For instance, consider x = 5+ξ
and y = 5 − η for very tiny numerical values ξ and η. If the obvious formula
for 4⊥p were used, roundoff in p(x) and p(y) might be all that was left after
p(x) − p(y) cancelled, so the formula could be very unsatisfactory numerically.
Let us try several ways.

7

The polynomial evaluation procedure based on Horner’s recurrence as pro-
gram p is a reasonable way to compute p ≈ p(z) =

∑n
0 ajz

n−j . The augmented
recurrence in program dp1 computes d ≈ 4⊥p([x, y]) without losing all accuracy
as y → x.

As a specific example, if we take ξ = η = 3× 10−11 on a 12-digit calculator,
so that x = 5.00000000003 and y = 4.99999999997, we find that Horner’s recur-
rence produces p(x) ≈ −0.001265 instead of 8.64 × 10−8 and p(y) ≈ 0.001265
instead of −8.64× 10−8. Then (p(x)− p(y))/(x− y) ≈ 4.2× 107 instead of the
value 4⊥p = 2880 (which is correct to 21 significant decimals).

The augmented recurrence produces 4⊥p ≈ d = 2879.999, which is a vast
improvement since it loses only five of the figures carried instead of all of them.
Thus divided-difference-inspired routine works well, and in the absence of other
information, is to be recommended1.

Even without such marked symmetries in the polynomial, there are general
methods for improving evaluation accuracy if there is sufficient reason to believe
the evaluation will be done many times. Such an analysis could be based on
analysis of nearby polynomial zeros (see Meszteny and Witzgall [14]).

Example 4:
Integration of rational functions (ratios of polynomials) results in a combina-

tion of rational functions, polynomials and logarithms (or arctangents). There-
fore the remaining case is the evaluation of the difference of rational functions
R(b)−R(a) where

R(z) =
N(z)
D(z)

.

Rearrange the computation of R(b)−R(a) as:

(D (b) +D (a)) (N (b)−N (a)) − (D (b)−D (a)) (N (b) +N (a))
2D (a) D (b)

.

Evaluation of the polynomial differences in the numerator can be performed
by the method of example 3, using the divided-difference program dp1, and
factoring out the (x − y). That is, if lN is the list of coefficients in N , degN is
the degree of N , and similarly for D, a formula for evaluation of R(x) − R(y)
looks like

(x-y)/(2*D(x)*D(y)) * (dp1(x,y,lN,degN)*(D(x)+D(y))
-dp1(x,y,lD,degD)*(N(x)+N(y))).

Evaluation of the non-differenced polynomials D(x), D(y), N(x), N(y)
can be done by Horner’s Rule or the method suggested by Meszteny and Witz-
gall [14]. As can be seen, the fundamental idea is again that of factoring out

1But for this test case we can do even better. We can retain near-full-accuracy by exploiting
the special nature of p(z) as a product of factors (z−j) by ordering the factors to take account
of our special interest in values z = x and z = y very near 5. Details are discussed in an
extended earlier version of this paper[11]

8

(x − y) so that the computation of the numerator ends with a multiplication
rather than an addition or subtraction.

Example 5:
Consider now the combination of examples 1 or 2 and 4: the difference of logs

(or arctangents) of a rational function. For the first case,logR(b) − logR(a) we
start by looking at the values for x = R(b) and y = R(a). As shown in example
2, if their ratio is far enough from 1, we can simply return log x/y. If the ratio is
between 1/2 and 2, we compute x−y by the method in example 4, and proceed
with (either of) the formulas in example 1. Similarly, for arctan, we apply the
method in example 4 to the calculation of the numerator in (x− y)/(1 + xy).

By means of these five examples, we have shown how one can reasonably
rearrange (or better, produce ab initio) more useful forms for results from some
existing computer algebra system’s symbolic integration programs. Recall that
our goal is the production of a program “Integral of f” of two arguments, the
lower and upper bounds of the integral. This program evaluates the polynomial,
rational function and log parts, through divided differences. (The arctangents
can also be evaluated via complex logs).

In the next section we explain one extension to divided-difference reformula-
tion that may be of particular use in our context of rational function integrals.

Sparse polynomials

The routine reformulation of the difference of sparse polynomials by the methods
indicated above can spawn substantially more computation than is actually
necessary.

For example, consider p(x) − p(y) = x1024 − y1024. If the program equiv-
alent to dp above were executed, it would involve some 2047 multiplications.
By computing z1024 by ten squarings of z, we can compute p(x) − p(y) in 20
multiplications. This result is inaccurate when x is very near y but it takes far
less work. There is another way to compute p(x, y) accurately and fast and,
suitably extended, it can be applied to sparse polynomials generally.

Observe that x1024 − y1024 can be expressed as

(x− y) (x+ y)
(
x2 + y2

) (
x4 + y4

) (
x8 + y8

)
· · ·
(
x512 + y512

)
.

Also observe that by computing x2, x4, etc., by successive squaring, not much
waste is involved in computing the factors, and the “extra” cost for additions
and multiplications is proportional to the logarithm of the power. Evaluating
this expression requires only 28 multiplications.

The power need not be a power of two: Two multiplications suffice to com-
pute z3 = z · z2, and two multiplications suffice to compute

4⊥ ↑3 ([x, y]) =
x3 − y3

x− y
= x2 + xy + y2 = x · (x+ y) + y2.

9

The last formula derives directly from one of the product rules for 4⊥ [12] which
we quote here:

Suppose f(z) = g(z) · h(z). Then

4⊥f([x, y]) = (f(x)− f(y))/(x− y)
= 4⊥g([x, y]) · h(x) + g(y) · 4⊥h([x, y])
= 4⊥g([x, y]) · h(y) + g(x) · 4⊥h([x, y])

= 4⊥g([x, y]) ·
(
h(x) + h(y)

2

)
+
(
g(x) + g(y)

2

)
· 4⊥h([x, y]).

Although three multiplications suffice to compute z5 = z · (z2)2, five are
needed for its divided difference:

(x5 − y5)/(x− y) = x4 + x3y + x2y2 + xy3 + y4 = x · (x+ y) · (x2 + y2) + (y2)2.

The last formula again derives directly from the product rules for 4⊥:

z5 =↑5 (z) = z· ↑2 (↑2 (z)),

so

4⊥ ↑5 ([x, y]) = x · 4⊥ ↑2 (↑2 ([x, y])) + 1· ↑2 (↑2 (y))
= x · 4⊥ ↑2 ([↑2 (x), ↑2 (y)]) · 4⊥ ↑2 ([x, y]) + y4

= x · (x2 + y2) · (x+ y) + y4.

Five multiplications suffice to compute z15 = (z5)3. Eleven suffice for its
divided difference:

x2:x*x, x4:x2*x2, x5:x*x4,
y2:y*y, y4:y2*y2, y5:y*y4,
d: (x5*(x5+y5)+y5*y5)*(x*(x+y)*(x2+y2)+y4).

This formula derives from

4⊥ ↑3 (↑5 ([x, y])) = 4⊥ ↑3 ([x5, y5]) · 4⊥ ↑5 ([x, y])

which is a consequence of the chain rule for divided differences which we quote
here:

Suppose f(x) = g(h(x)). Then

4⊥f([x, y]) = 4⊥g([h(x), h(y)]) · 4⊥h([x, y]).

Given a program to compute xn (by repeated squaring, addition chains,
etc.) these techniques can be (automatically) applied to produce an appropriate
divided difference program.

10

Summary and Conclusions

Symbolic integration programs can give exact answers as formulas. If the formu-
las are going to be used for numerical evaluation, then they should be produced
by a program designed to generate formulas for efficient and accurate com-
putation. It is possible but somewhat more difficult to have the answers as
currently produced post-processed by another program to re-express the results
in arithmetically desirable forms, although analysis of domains of validity (see
the appendix) is a subtle issue.

For rational function integration where the answers are in terms of arc-
tangents and logarithms, reformulations of the typical results of integration
programs have been suggested above.

A substantial collection of additional techniques for stable evaluation of these
and other forms can be found by considering the manipulations developed in
the calculus of divided differences. (see [12], or [15]).

One might assume that these reformulations require additional arithmetic
steps, but these transformations generally use about the same amount of compu-
tation (and sometimes less) when compared to the naive approaches. Observe
that the expression (in normal mathematical notation) and the program (in
some programming language) will not necessarily resemble each other.

More work should be done in the synthesis of symbolic and numerical com-
puting not only in the context of integration, but in any area in which tedious
reformulation and manipulation of symbolic information results in executable
code. As symbolic manipulation programs become more readily available to
persons generating scientific programs, material such as is contained in this pa-
per should be incorporated into standard libraries of symbolic routines, much as
there are libraries of numeric routines. Surprisingly even evaluation of polyno-
mials can be a challenge, given the variety of contrainst on this problem [6]. It is
plausible that scientific problem solving environments may provide appropriate
frameworks for such material.

In this paper our intent has not been to present exhaustively the transforma-
tions that would be of interest for such a library. Our intent has been instead
to awaken awareness of these transformations, and illustrate a few key ones.
Automation of these transformations (for example to “compile” an arbitrary
program h(z) into a divided-difference version dh(x,y)) requires addressing a
number of subtleties beyond the scope of this brief paper. See however, [12] for
more details.

Acknowledgments

Work reported herein was supported in part by the Army Research Office, grant
DAAG29-85-K-0070, (R. Fateman and W. Kahan) and by the Office of Naval
Research N00014-85-K-0180 (W. Kahan) through the Center for Pure and Ap-
plied Mathematics, University of California, Berkeley, and the National Science

11

Foundation CCR-9901933 (R. Fateman) through the Electronics Research Lab-
oratory, UC Berkeley.

Appendix

This is a case study of diverse ways to evaluate a particular integral, and where
those methods might be useful. Reformulation using divided differences is only
one of the tools used. Careful examination of the behavior of the integral in
different regions is also necessary. Consider F (z) =

∫
f(z)dz + C when

f(z) =
z + 1

(z − 1)3 z2
.

The closed form for F (z) produced by Macsyma, namely

−4 log z + 4 log (z − 1) +
4 z2 − 6 z + 1
z3 − 2 z2 + z

, (1)

is algebraically a “correct” anti-derivative, but it is too simple; it fails to take
into account three difficulties:

1. We must decide whether to regard F (z) as a multi-valued function contin-
uous everywhere in the complex plane except at its logarithmic poles z = 0
and z = 1, or as a single-valued function continuous everywhere except
across a slit that joins those poles. Even if z is restricted to the real axis,
the difficulty persists, manifesting itself as a change in the “constant” of
integration as z passes each pole.

2. Calculating F (z) numerically from this explicit formula or any other single
formula runs a serious risk of inaccuracy. At least three formulas are
useful: one for the region between the poles, another for huge |z|, and a
third elsewhere.

3. As we have illustrated in this paper, calculating
∫ y

x
f(z)dz = F (y)−F (x)

numerically from the explicit formula (1) suffers from further inaccuracy
caused by cancellation when x and y are relatively close.

If we take the principal values ([10]) of the logarithms in formula (1) it defines
F (z) to be an analytic function everywhere except on the “slit” 0 ≤ z ≤ 1, across
which F (z) jumps by 8πi. The behavior of F (z) as z →∞ is not obvious from
formula (1) but can be inferred roughly from the following equivalent formula:

F (z) = −8 arctanh
(

1
2z − 1

)
+

3
z − 1

− 1
(z − 1)2

+
1
z
. (2)

This formula (2) was derived from (1) by using partial fraction expansion and
the divided difference formula

log y − log x = (y − x)4⊥ log([x, y]) = 2 arctanh
(
y − x
y + x

)
.

12

Evidently F (∞) = 0. How rapidly does F (z) decay to 0 as z → ∞? By
direct computation of a truncated Taylor series for large z (in Macsyma, one
can compute taylor(F(z),[z,0,7,asymp])) we find that, as 1/z → 0, F (z) is
approximated by

− 1
3 z3

− 1
z4
− 9

5 z5
− 8

3 z6
− 25

7 z7
+ · · · . (3)

Another approach in Macsyma which requires some tinkering to get the answer
in the right form, uses exact computation of power series:

f(z) =
∞∑

i=1

n2

zn+3

and term-by-term integration yields

F (z) = −
∞∑

i=1

n2

(n+ 2)zn+2
.

These Taylor (actually Laurent) formulas are valid for all |z| > 1, and the
truncated version is useful computationally only for |z| � 1. For instance,
calculations on a ten-digit calculator produce

F (123.4567) =

−0.00000018475 from (1)
−0.00000018153 from (2)
−0.0000001815155894 from (3)

The last evaluation is correct to ten significant decimals using only the first five
terms of the series (3). Although formula (2) is preferable to (1) for all z > 1
and all z < 0, cancellation leaves it far less accurate than (3) when |z| > 10.

Formulas (1) and (2) produce a complex value F (z) = G(z)±4πi on the slit
0 < z < 1, where

G(z) := 4 log
(

1− z
z

)
+

3
z − 1

− 1
(z − 1)2

+
1
z
.

This G(z) provides as accurate a way as any to compute the real integral∫
f(z)dz = G(z)+C over any subinterval of 0 < z < 1. SinceG(0.30947141907...) =

0, relative accuracy is lost unavoidably as z approaches the zero of G(z). For-
tunately, the computation of G(y)−G(x) need not suffer inaccuracy caused by
cancellation when x and y are close if, again, divided differences are used to
reformulate the calculation.

Provided x and y both lie between 0 and 1,

G(y)−G(x) =

8 arctanh
(

x− y
y(1− x) + (1− y)x

)
+ (x− y)

(
3

(y − 1)(x− 1)
− (x− 1) + (y − 1)

(y − 1)2(x− 1)2
+

1
yx

)
.

13

The same formula works for F (y) − F (x) when x and y either both exceed
1 or are both negative, provided either x or y lies in the domain where formula
(2) would be used. And when both |x| and |y| are so huge that the series
(3) should be used to compute F (x) and F (y), but x and y are so close that
F (y)− F (x) suffers serious loss of accuracy because of cancellation, proceed as
follows. Since x and y are both close and huge, the same initial terms of the
series (3) would be used to calculate both F (x) and F (y). These terms amount
to a polynomial P (1/z); in other words, F (x) = P (1/x) and F (y) = P (1/y) to
working accuracy. To about the same relative accuracy,

F (y)− F (x) = (x− y)dp1(1/y, 1/x, P (z))/(yx),

where dp1 is the program that calculates the polynomial divided difference of
P :

4⊥P ([a, b]) = (P (a)− P (b))/(a− b).

As should be evident from the analysis in this appendix, a number of com-
putational and at least partly symbolic steps may be needed beyond deriving an
anti-derivative to obtain a full measure of usefulness from a symbolic integration
program, even in the case of a rational function integrand.

References

[1] Manuel Bronstein. Integration of elementary functions. Ph.D. dissertation,
Mathematics Dept. Univ. Calif. Berkeley. April, 1987.

[2] Bruno Buchberger, George Collins, Rudiger Loos, A. Albrecht, (eds). Com-
puter Algebra, Springer Verlag, 1984.

[3] James Davenport. “Integration: Formal and Numeric Approaches,” in
Methods and Languages for Scientific Computation (North-Holland) also
Appendix 2 in Integration Formelle R.R. No. 375, Lab. d’informatique et
de Math. Appl. de Grenoble. March, 1983.

[4] Richard J. Fateman. “Symbolic Manipulation Languages and Numerical
Computation: Trends,” in J. K. Reid (ed) The Relationship between Nu-
merical Computation and Programming Languages, (North-Holland), 1982,
117-130.

[5] Richard J. Fateman. “Computer Algebra and Numerical Integration,” in
P. S. Wang (ed) ACM Proc. SYMSAC 81, Aug., 1981, 228-232.

[6] Richard J. Fateman. “Code generation: evaluating polynomials” in prepa-
ration.

[7] Keith R. Geddes. “Numerical Integration in a Symbolic Context,” in
B. W. Char (ed) ACM Proc. SYMSAC 86, July 1986, 185-191.

14

[8] W. Kahan. “Divided Differences of Algebraic Functions,” Course notes for
Math 228A, Univ. Calif. Berkeley, Fall, 1974. 15 pages, unpublished.

[9] W. Kahan. “Handheld Calculator Evaluates Integrals,” Hewlett-Packard
Journal 31, 8, 1980, 23-32.

[10] W. Kahan. “Branch Cuts for Complex Elementary Functions, or Much Ado
about Nothing’s Sign Bit,” Chapter 7 of A. Iserles and M. J. D. Powell (eds).
The State of the Art of Numerical Analysis, Oxford Univ. Press, 1987.

[11] W. Kahan and R. J. Fateman. Improving Exact Integrals from Symbolic
Computation Systems, Tech. Rept. Ctr. for Pure and Appl. Math. PAM
386, Univ. Calif. Berkeley. 1986.

[12] W. Kahan and R. J. Fateman. Symbolic Computation of Divided Differ-
ences, (original notes dated 1992), SIGSAM Bulletin Volume 33, Number
2, June, 1999, Issue 128, 7-28.

[13] The Mathlab Group. Macsyma Reference Manual, Lab. for Comp. Sci,
MIT, Jan, 1983 (2 volumes: version 10), available also from the National
Energy Software Center (NESC), Argonne, IL. Similar manuals are avail-
able from Symbolics, Inc.

[14] C. Meszteny and C. Witzgall. “Stable Evaluation of Polynomials,” J. of
Res. of the Nat’l Bur. of Stds.-B, 71B, no 1 (Jan., 1967) 11-17.

[15] L. M. Milne-Thomson. The Calculus of Finite Differences, Macmillan, N.Y.
1933.

[16] Shuichi Moritsugu and Makoto Matsumoto. “A Note on the Numerical
Evaluation of Arctangent Functions,” SIGSAM Bulletin 23, no. 3.(July,
1989) 8-12.

[17] Barry M. Trager. Integration of Algebraic Functions, PhD. dissertation,
Mass. Inst. of Techn. EECS Dept. 1984.

15

