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1. Introduction. Every student of calculus learns its fundamental theorem, usually stated as

follows [1]. If f is continuous on [a; b], then the function de�ned by

g(x) =

Z x

a

f(t)dt (1)

is continuous on [a; b] and di�erentiable on (a; b), and g0(x) = f(x). Once students have learned

this theorem, they proceed to learn a variety of ways to obtain closed-form expressions for the

integrals of given integrands. These ways include memorizing a table of simple integrals, applying

substitutions, learning to consult tables of integrals such as the CRC handbook [2] or Gradshteyn

and Ryzhik [3], and, increasingly, asking a computer algebra system, such as Derive, Maple or

Mathematica.

The �rst integrations that a student sees performed always result in closed-form expressions

that are correct for the whole domain of the integrand. For example, when a textbook demonstrates

how to obtain the result Z
dx

p
1� x2

= arcsin x

using the substitution x = sin �, there is usually no accompanying statement that the integrand is

continuous on the interval (�1; 1) and that arcsin x is the correct integral over that whole interval.

Mavbe it is obvious. By working through problem sets, students accumulate examples of integrals

that reduce to expressions which are valid everywhere that the integrand is continuous. It is

inevitable that students then jump, perhaps unconsciously, to the conclusion that any closed-form

result obtained by a substitution, or found in a book, must be valid on an interval equal to the

domain of the integrand. This paper considers some cases in which that conclusion is false.

Consider the function f =
p
1� cosx. Figure 1 shows that f is continuous for all x, and

therefore the fundamental theorem says there must exist a function g, also continuous for all x,

which is its integral. Using the substitution u = cot 1

2
x, we can derive the equation

Z p
1� cos x dx = �2

p
1� cosx cot 1

2
x : (2)

This equation is returned by Mathematica, for example. The right-hand side of (2) is discontinuous

at even multiples of �, as �gure 1 shows, and so although it was obtained by a standard procedure,

it is not the integral g that the theorem says exists.

There are two attitudes we might take towards an equation such as (2). On the one hand,

we could say that since (2) is correct only on the interval (0; 2�), the fault is one of notation.

Technically, it is always incorrect to quote a formula without specifying the interval on which it

applies, and this is a case in which the common practice of leaving the interval unspeci�ed is

particularly misleading. With
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Fig 1. The integrand and integral in (2). { { { , the integrand. ||, the discontinuous integral.

this attitude, the problem becomes one of determining the interval of validity of a given closed-form

expression and ensuring that the interval is properly displayed. On the other hand, we could say

that since the fundamental theorem tells us that there does exist an integral of f that is continuous

everywhere on the real line, our object should be to capture it in a closed-form expression. With

this attitude, the problem becomes one of modifying expressions like (2) to enlarge their intervals

of validity, and this is the view we take here.

We can contrast (2) with the equationZ
dx

x2
= �

1

x
: (3)

This equation is not valid on intervals containing the origin, and again textbooks are unlikely to

say this explicitly. The di�erence, though, is that we cannot do better, because the discontinuity in

1=x is the result of 1=x2 violating the conditions required by the fundamental theorem at the origin.

Discontinuities such as those seen in (2) should be regarded as spurious, and therefore subject to

further investigation, while discontinuities or singularities such as the one in (3) are genuine and

must be accepted.

This is not a paper on computer algebra systems, but the perspective they add to the problem

is an interesting one, and should be taken into account. To begin with, the spread of these systems

is allowing increasing numbers of students to range much more widely in calculus than before,

making it more likely that they will discover the di�culties discussed here for themselves. In

addition, experienced mathematicians use these systems and demand the maximum in convenience

from them, which means the designers must automate tasks that previously were left unaddressed,

such as allowing for discontinuities. Finally, at present no algebra system has a good method for

informing the user that a result it has obtained is valid only on a restricted interval, and so it is

important to return results that are valid on as wide an interval as possible.

In the following sections we shall look at various integration problems in which expressions

arise that contain spurious discontinuities, in the sense de�ned above. As sources of discontinuous

expressions, we shall consider integral tables, substitutions and special types of integrands. It is

important to realize that tables of integrals and calculus textbooks harbour an astonishingly large

number of expressions with spurious discontinuities, and the fact that these entries have successfully

maintained their population for over 100 years indicates clearly that they have no natural predators,

even though they are one species that humans should be encouraged to endanger.
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Figure 2. The functions in equations (4) and (5). { { { , the integrand. ||, the discontinuous

integral (4). - � - � -, the continuous integral (5).

2. Tables of integrals. We discuss this source of discontinuous integrals using a speci�c example,

an entry appearing in two of the most popular tables of integrals, Gradshteyn and Ryshik [3] where

it is formula 2.132.1, and the CRC Press Handbook [2] where it is formula 77.

Z
dx

x4 + 1
=

1

4
p
2
ln
x2 +

p
2x+ 1

x2 �
p
2x+ 1

+
1

2
p
2
arctan

x
p
2

1� x2
: (4)

The left-hand side of this equation is continuous for all x, but the right-hand side contains discon-

tinuities at x = �1. There is nothing printed in the tables to warn the reader of the discontinuities

or, equivalently, to advise the reader of the intervals on which the formula is valid. To make

matters worse, the editors of these tables have overlooked an alternative to (4) which is free of

discontinuities.Z
dx

x4 + 1
=

1

4
p
2
ln
x2 +

p
2x + 1

x2 �
p
2x + 1

+
1

2
p
2
arctan(x

p
2 + 1) +

1

2
p
2
arctan(x

p
2� 1) : (5)

Figure 2 shows plots of (4) and (5) on the same axes.

Equation (5) shows that the discontinuities in (4) are unnecessary, and even misleading, because

they masquerade as properties of the integrand, whereas they are really artefacts of the process

that derived the expression. It is likely that (4) was originally derived by obtaining (5) �rst and

then making incorrect use of the formula [3]

arctanx + arctan y =

8>>>>><
>>>>>:

arctan
x+ y

1� xy
; for xy < 1,

arctan
x+ y

1� xy
+ � ; for xy > 1 and x > 0,

arctan
x+ y

1� xy
� � ; for xy > 1 and x < 0.

Probably, the �rst line of this formula was taken to apply for all x and y, a misconception easily

carried away from a casual reading of Abramowitz and Stegun [4]. By comparing (4) and (5), we

can see that there is a temptation to prefer (4) because of its compactness, but the discontinuities

it introduces negate this advantage.
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Figure 3. The functions in equations (6) and (7). { { { , the integrand. ||, the discontinuous

integral (6). - � - � -, the continuous integral (7).

A search through any extensive table of integrals will �nd entries in which there are terms

of the form arctan(P=Q), where P and Q are polynomials. If Q has roots within the range of

integration, then the expression will contain discontinuities. Tables of integrals should correct such

entries. A form for an integral that is free of spurious discontinuities must be counted as superior

to one that is not, and it is surely shoddy editing to print the inferior form. Also, there is the

question of e�ciency. If the user must check every entry in the tables for continuity, the use of the

tables becomes less e�cient.

3. Discontinuity from substitution. The most important substitution that leads to spurious

discontinuities is the Weierstrass, or tan 1

2
x, substitution. For example, the function 3=(5� 4 cosx)

is continuous and positive for all real x, and so its integral should be continuous and monotonically

increasing. By letting u = tan 1

2
x, we obtainZ

3 dx

5� 4 cosx
=

Z
6 du

1 + 9u2
= 2 arctan(3 tan 1

2
x) : (6)

The �nal expression in (6) is discontinuous at odd multiples of �, as can be seen in �gure 3. The

unsatisfactory nature of (6) has rarely been noted. The only published commentary on this class

of integrals that acknowledges that special treatment is required is the introduction to the CRC

tables [2] where it is stated that the `correct branch' of the inverse tangent must be used when

applying the formula.

A new method for evaluating integrals such as (6) that always yields continuous expressions

has been developed [5]. When applied to the integral above, it givesZ
3 dx

5� 4 cosx
= 2 arctan(3 tan 1

2
x) + 2�

�
x+ �

2�

�
; (7)

where b c is the 
oor function. An interesting facet of this result is that each term separately is

discontinuous at odd multiples of �, but the algorithm arranges things so that together they make

a continuous function. Figure 3 shows plots of the functions appearing in (6) and (7). We can

express the 
oor function in terms of an inverse tangent as

2�b(x+ �)=2�c = x� 2 arctan(tan 1

2
x) ;
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Figure 4. The functions in equation (10). { { { , the integrand. ||, the discontinuous integral.

and substituting this into (7) and combining inverse tangents gives the following compact variation

on (7): Z
3 dx

5� 4 cosx
= x+ 2 arctan

sin x

2� cosx
: (8)

A generalization of this expression that is suitable for integral tables is as follows. If

p2 > q2 + r2 ;

then Z
dx

p+ q cos x+ r sin x
=

x

�
+

2

�
arctan

r cos x� q sin x

p+ q cosx+ r sin x+�
; (9)

where � = sgn(p)
p
p2 � q2 � r2. The right-hand side is continuous for all possible values of the

parameters, and should be used in place of all similar formulae, wherever found.

Any substitution x = u(s) can lead to an antiderivative with a spurious discontinuity if u(s)

contains a singularity. For example, since the substitution x = 1=s is singular at the origin, results

obtained using it should be checked for continuity there. The integrand in (10) is continuous every-

where, having a removable singularity at the origin, but the substitution 1=s gives a discontinuous

integral. Z
e1=x

(1 + e1=x)2
dx

x2
=

Z
�es

(1 + es)2
ds =

1

1+ e1=x
: (10)

The integrand and integral are plotted in �gure 4. We can remove the jump by using the signum

function. The jump in the function at the origin is �1, and so a continuous expression for the

integral is Z
e1=x

(1 + e1=x)2
dx

x2
=

1

1 + e1=x
+ 1

2
sgn x :

4. Piecewise continuous functions. Introductory calculus books and integral tables do not

address the problems of integrating piecewise continuous functions, even though the step function,

and similar functions, are very useful in applications and are used freely in physics and engineering

books. Recently, Botsko [6] has stated and proved a generalization of the fundamental theorem

that requires only that f be
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integrable, and not necessarily continuous, and hence covers piecewise continuous functions. The

central topic of this paper, namely the importance of ensuring that integrals are continuous, is an

important factor in the development of correct rules for integrating piecewise-de�ned functions.

The Heaviside step function is de�ned by

H(x) =

�
1; for x � 0 ;

0; for x < 0 .

As an example of how we want to work with this function, consider the following di�erential

equation coming from elementary beam theory. The bending moment M(x) in a beam extending

from x = 0 to x = l and supporting point loads Pa and Pb at x = a and x = b is given by the

equation

dM

dx
=

(
K; for 0 � x � a ;

K + Pa; for a � x � b ;

K + Pa + Pb; for b � x � l .

where K is an unknown constant. The equation is to be solved subject to boundary conditions

representing free ends, to wit, M(0) = M(l) = 0. Most students would solve this by integrating

each line separately to obtain

M =

8<
:
Kx+A1; 0 � x � a ;

(K + Pa)x+A2; a � x � b ;

(K + Pa + Pb)x+A3; b � x � l .

Matching the solutions at x = a and at x = b gives

A1 = A2 + Paa and A2 = A3 + Pbb :

The boundary conditions now give A1 = 0 and K = Pa(a� l)=l+ Pb(b� l)=l. The problem is not

�nished, however, because we must integrate twice more the same way to obtain the de
ection.

A much quicker way to proceed is to write

dM

dx
= K + PaH(x� a) + PbH(x� b) ;

and develop rules for integrating H . At �rst sight, it might seem that the rule is very simple,

namely Z
f(x)H(x� a)dx = H(x� a)

Z
f(x)dx :

For most functions f , however, the right-hand side will violate our principle that the integral must

be continuous. The better form isZ
f(x)H(x� a)dx = H(x� a)

Z x

a

f(t)dt : (11)

The right-hand side is now continuous everywhere that the integral of f is. Applying this to the

di�erential equation above, we get

M = (x� a)PaH(x� a) + (x� b)PbH(x� b) +Kx+A ;
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and the boundary conditions give the same solution as before. The de
ection can now be easily

obtained by integrating twice more to �nd

y = 1

6
(x� a)3PaH(x� a) + 1

6
(x� b)3PbH(x� b) + 1

6
Kx3 + Bx + C :

The boundary conditions y(0) = y(l) = 0 give us B and C. This method of solution is more

convenient than the �rst one for people working by hand, and vastly more convenient for those

using an algebra system.

5. Conclusions. In calculus textbooks, it is popular to include a section on the use of integral

tables. In view of the results in section 2, the textbooks should warn students that any expression

extracted from a table might contain a spurious discontinuity. With equal force, we should require

the editors of handbooks to check their tables thoroughly. In e�ect, an entry in a table should not

be considered correct unless it is continuous on as wide an interval as possible. The alternative

would be to note the interval upon which the integral is valid, without attempting to broaden it,

but this would be less useful to the reader. Similar comments can be applied to computer algebra

systems.

The Weierstrass substitution discussed in section 3 was once a standard topic in calculus

textbooks, albeit an advanced topic. It appears less frequently now, but if it is treated, I think that

an analysis of the discontinuity and its correct handling must be included. The material of section

4 comes from my experience of watching students tackle problems such as the one described, and

from implementing the solution on algebra systems.

This paper springs directly from discussions with David Stoutemyer and Al Rich, the devel-

opers of Derive, a computer algebra program. Almost all of the items discussed here have been

implemented in Derive, and I am grateful to its developers for their interest. I am also grateful to

the developers of Maple for stimulating discussions, and for adopting some of the ideas above.
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