
On competitive on-line algorithms for the
dynamic priority-ordering problem
G. Ramalingam and Thomas Reps
Computer Sciences Department, University of Wisconsin−Madison, 1210 West Dayton Street, Madison, WI
53706 USA

Abstract

Ramalingam, G. and Reps, T., On competitive on-line algorithms for the dynamic priority-ordering problem.

The vertices of a directed acyclic graph (DAG) are said to be correctly prioritized if every vertex v in the graph
is assigned a priority, denoted by priority(v), such that if there is an edge in the DAG from vertex v to vertex w
then priority(v) < priority(w). The dynamic priority-ordering problem is to maintain a correct prioritization of
the graph as the DAG is modified. Alpern et al. presented an algorithm for this problem. In this paper we show
that the Alpern et al. algorithm does not have a constant competitive ratio, where the cost of the algorithm is
measured in terms of the number of primitive priority-manipulation operations. The proof also shows that there
exists no algorithm for the problem that has a constant competitive ratio, as long as the allowed primitive priori-
ty-manipulation operations satisfy a simple property. The proof that we give also shows that there exists no al-
gorithm for the problem of maintaining a topological-sort ordering that has a constant competitive ratio.

Ke ywords: Analysis of algorithms, competitive ratio, dynamic priority-ordering problem, dynamic topological-
sorting problem

1. Introduction

The vertices of a directed acyclic graph (DAG) are said to be correctly prioritized if every ver-

tex v in the graph is assigned a priority, denoted by priority(v) and drawn, say, from the non-

negative integers, such that if there is an edge in the graph from vertex v to vertex w then

priority(v) < priority(w). (Note that a given DAG has infinitely many correct prioritizations.)

The dynamic priority-ordering problem is to maintain a correct prioritization of the DAG as it is

modified by inserting or deleting vertices and edges [5,2].

Previous work has addressed two versions of the problem. Hoover gav e an algorithm for the

restricted version of the problem where each modification of the DAG consists of a unit change

[5, pp. 19-23]. In this version of the problem, each modification to the DAG inv olves the inser-

tion or deletion of exactly one edge, after which the DAG’s priorities are updated so that the ver-

tices are again correctly prioritized. Although restricted to unit changes, Hoover’s method

Correspondence to: T. Reps, Computer Sciences Department, University of Wisconsin−Madison, 1210 West Dayton
Street, Madison, WI 53706 USA. Email: reps@cs.wisc.edu.

− 2 −

addresses the fully dynamic version of the problem in that a mixture of insertions and deletions

are permitted in a sequence of graph modifications. Alpern et al. gave an algorithm allowing

multiple, heterogeneous changes: between updates, the DAG is allowed to be restructured by an

arbitrary mixture of insertions and deletions [2].

In this paper, we address the question of how well an algorithm for the dynamic priority-

ordering problem can perform as an on-line algorithm responding to a sequence of requests of

two types: (i) requests to perform unit-size graph-modification operations, and (ii) requests to

update priority values. The answer we obtain for this question applies equally well to both ver-

sions of the problem described above: the unit-change version corresponds to requiring the

request sequence to have an update request following each (unit-size) graph-modification request;

the multiple-heterogeneous-change version corresponds to allowing an arbitrary collection of

graph-modification requests between update requests.

The notion of an on-line algorithm’s competitive ratio has been proposed as a way to measure

the performance of algorithms over a sequence of operations [16,8,6]. An on-line algorithm

receives a sequence of requests, and after each request it responds with a corresponding action.

Each action has an associated cost, and the cost of the algorithm for the request sequence is the

sum of costs of the actions. An off-line algorithm for the same problem is permitted to examine

the entire sequence of requests before choosing its actions. To determine an on-line algorithm’s

competitive ratio, one assumes that there is an adversary with “maximally destructive intent” gen-

erating the requests. The notion of competitiveness assesses the amount of “damage” that the

adversary can inflict, in the sense that the competitive ratio compares the performance of the on-

line algorithm to the performance of an optimal algorithm for the off-line version of the problem.

The competitive ratio is the maximum value—over any sequence of requests—of the ratio

between the cost of the on-line algorithm and the cost of an optimal off-line algorithm. Thus, an

algorithm designer seeks a competitive ratio as small as possible (where the smallest possible

ratio is 1).

In this paper, we show that the algorithm presented by Alpern et al. for the dynamic priority-

ordering problem does not have a constant competitive ratio. The proof also shows that no algo-

rithm for the dynamic priority-ordering problem can have a constant competitive ratio as long as

the primitive priority-manipulation operations used by the algorithm satisfy a simple property.

Consider the abstract interface of the set of priority-manipulation operations. This interface will

− 3 −

include an operation for comparing two priorities, operations for creating or generating new prior-

ities (for example, an operation create_between(p, q) might generate a new priority that lies

between the two specified priorities), and possibly other operations with priorities. Let us say that

a particular implementation of a priority space has a functional interface if the execution of an

operation op(p1, . . . , pk) does not have the side effect of changing the order between two priori-

ties q1 and q2 if {q1, q2} ∩ {p1, . . . , pk} = ∅. We show that no algorithm that makes use of a pri-

ority space with a functional interface can have a constant competitive ratio. (We measure the

cost of the algorithm’s actions in terms of the number of priority-space operations and priority

assignments made.) The proof that we give also shows that there exists no algorithm for the

dynamic version of the topological-sorting problem [7, pp. 258-268]—i.e., the problem of main-

taining a topological-sort ordering of the vertices of a DAG as the DAG undergoes changes—that

has a constant competitive ratio.

The remainder of the paper consists of two sections. Section 2 discusses two issues that moti-

vated the question addressed in the paper. Section 3 presents the proof that there exists no algo-

rithm for the dynamic priority-ordering problem that has a constant competitive ratio, under the

above assumptions.

2. Motivation and relationship with previous work

The dynamic circuit-annotation problem

Our work was partly motivated by the possibility of using an algorithm for the dynamic prior-

ity-ordering problem as a subroutine in an algorithm for the dynamic circuit-annotation problem

[2]. A circuit is a DAG where every vertex u is associated with a function Fu. The output value

to be computed at any vertex u is obtained by applying function Fu to the values computed at the

predecessors of vertex u. The circuit-annotation problem is to compute the output value associ-

ated with each vertex. The dynamic version of the problem is to maintain consistent values at

each vertex as the circuit undergoes changes [9,13,5,1,2,10].

From a systems-building perspective, the dynamic circuit-annotation problem is important

because it is at the heart of several important kinds of interactive systems, including the all-

pervasive spreadsheet [3,9] as well as language-sensitive editors created from attribute-grammar

specifications [15]. In the case of interactive systems based on attribute grammars, specialized

algorithms have been devised that take advantage of the special structure of the problem

− 4 −

[13,14,17,15]. However, a generalized framework has been proposed by Alpern et al. that uses

the annotation of graphs as a paradigm for specifying other classes of interactive systems, espe-

cially ones that cannot be encoded efficiently with attribute grammars [1]. Systems created using

this paradigm can give rise to arbitrary circuits. Thus, the dynamic circuit-annotation problem is

highly relevant to real-world systems.

It is useful to identify two classes of algorithms for the dynamic circuit-annotation problem:

conservative algorithms and speculative algorithms. Conservative update algorithms are based on

the following observations:

If during the process of assigning new values, a vertex is ever (temporarily) assigned a
value other than its correct final value, spurious changes are apt to propagate arbitrarily
far in the DAG. To avoid this possibility, an updating algorithm should schedule vertices
for re-evaluation such that any new value computed is necessarily the correct final value.
That is, a vertex should not be re-evaluated until all of its arguments are known to have
their correct final values.

In contrast, speculative update algorithms may temporarily assign a vertex a value other than its

correct final value. Speculative algorithms for the dynamic circuit-annotation problem have been

given by Ramalingam and Reps [10,11].

A conservative update strategy, howev er, is possible only if the updating algorithm has some

information about the topological structure of the circuit. In [2], Alpern et al. proposed the fol-

lowing algorithm for the dynamic circuit-annotation problem:

In addition to maintaining the values that annotate the vertices of a circuit, the algorithm
maintains a correct prioritization of the circuit’s vertices. After a circuit is modified, first
the priorities are updated so that the vertices are again correctly prioritized, and then—
using the updated priorities to schedule vertices for re-evaluation—the values are updat-
ed. The re-evaluation phase makes use of a worklist—implemented as a priority
queue—to keep track of all vertices for which at least one predecessor has changed val-
ue. (The worklist is initialized with all vertices of the circuit whose vertex-definition
function was altered.) At each step, the vertex selected for re-evaluation is one with
minimum priority value, and consequently the order in which vertices are re-evaluated is
one that respects a topological-sort order of the circuit.

The relevance of the dynamic priority-ordering problem to the dynamic circuit-annotation prob-

lem directly motivates the issue of trying to characterize how good the Alpern et al. priority-

ordering algorithm is.

− 5 −

Analysis of dynamic priority-ordering over a sequence of operations

A common way to evaluate the time complexity of an algorithm or problem is to use asymp-

totic worst-case analysis and to express the cost of the computation as a function of the size of the

input. However, this approach to algorithm analysis fails to distinguish between any dynamic

algorithm for the priority-ordering problem and the “start-over” algorithm that discards all priori-

ties and re-assigns priorities from scratch. As we will see in Section 3, for any dynamic priority-

ordering algorithm there are examples for which a single change to the DAG forces the algorithm

to give new priorities to Ω(n) vertices.

Because an algorithm for a dynamic problem makes use of the solution to one problem instance

to find the solution to a “nearby” problem instance, an alternative way to measure an algorithm’s

cost is to measure the time complexity of a dynamic algorithm in terms of the sum of the sizes of

the changes in the input and output [13,2,10,12]. A dynamic algorithm is said to be bounded if,

for all input data-sets and for all changes that can be applied to an input data-set, the time it takes

to update the output solution depends only on the size of the change in the input and output, and

not on the size of the entire current input. Otherwise, a dynamic algorithm is said to be

unbounded. A dynamic problem is said to be bounded (unbounded) if it has (does not have) a

bounded algorithm.

More precisely, “boundedness analysis” measures the cost of an algorithm for a dynamic prob-

lem in terms of a parameter ||δ || that reflects the size of the change in the input and output. For

example, in the dynamic priority-ordering problem, for a given modification δ , the quantity ||δ || is

defined in terms of a set Sδ consisting of the minimum number of vertices whose priority needs to

be changed to have a correct prioritization of the modified graph; ||δ || is the sum of the number of

vertices in Sδ plus the number of edges with at least one endpoint in Sδ . (For a formal definition

of ||δ ||, see [2,10,12].)

Alpern et al. presented an algorithm that, after the insertion and/or deletion of (possibly many)

edges from a prioritized DAG, computes a correct prioritization of the new DAG by reassigning

new priorities to only O(||δ ||) vertices.1 In other words, the number of priority re-assignments that

1The priority-updating algorithm itself runs in time O(||δ ||2 log ||δ ||) [2]. Furthermore, when each modification of the
DAG consists of a unit change (i.e., the insertion or deletion of a single edge), the algorithm runs in time O(||δ || log ||δ ||).

− 6 −

the algorithm performs is at most a constant factor times the number of priority re-assignments

that any algorithm for the problem must make (for bounded-degree graphs).

However, unlike some other graph-annotation problems, such as the single-source shortest-path

problem, where there is one solution for a given graph, the priority-ordering problem admits mul-

tiple solutions. A given graph has infinitely many correct prioritizations. As defined by Alpern et

al., the quantity ||δ || used in the analysis of their priority-ordering algorithm is defined in terms of

the solution closest to the previous solution: ||δ || is related to the size of the minimal change to the

current prioritization needed to reach any of the correct prioritizations for the modified graph.

Consequently, this analysis tells us nothing about the behavior of the algorithm over a sequence of

operations. In particular, it does not tell us if, over a sequence of operations, the Alpern et al.

algorithm performs at most a constant factor times the number of priority re-assignments that any

algorithm for the problem must make.

This raised the question “Does the Alpern et al. algorithm have a constant competitive ratio?”

The material presented in Section 3 shows that the answer to this question is: “The algorithm does

not have a constant competitive ratio, but neither does any other on-line priority-ordering algo-

rithm that uses a priority space with a functional interface.”

3. The absence of a competitive algorithm for the dynamic priority-ordering problem

We show that the Alpern et al. algorithm for the dynamic priority-ordering problem is not com-

petitive by presenting a sequence of edge insertions for which the ratio of the number of priority

reassignments made by the algorithm to the number of priority reassignments made by a simple

offline algorithm is not bounded by a constant.

As explained in the introduction, the proof we present in this section applies to any algorithm

that makes use of a priority space with a functional interface. The Alpern et al. algorithm makes

use of a data structure developed by Dietz and Sleator that implements a densely-ordered priority

space [4]. This data structure has the following interface:

NextAfter(r): Return a priority value q, not previously in use, such that q > r
and for all p in use such that p > r, p > q.

Delete(p): Remove p from the set of priority values in use
Order(p, q): Test whether p < q
−∞, ∞ : constant priorities

− 7 −

Note that none of the above priority-space operations changes the order between any two prior-

ities already in use. We say that a particular implementation of a priority space has functional

interface if the execution of an operation op(p1, . . . , pk) does not have the side effect of changing

the order between two priorities q1 and q2 if {q1, q2} ∩ {p1, . . . , pk} = ∅. We now show that no

algorithm that makes use of a priority space with a functional interface can have a constant com-

petitive ratio. (We measure the cost of the algorithm’s actions in terms of the number of priority-

space operations and priority assignments made.)

When we refer to any on-line algorithm in this section, it will be assumed to be one that makes

use of a priority space with a functional interface. An algorithm will typically update the priority-

ordering by “changing” the priorities of some particular set of vertices. The priority of a vertex

may be “changed” by either explicitly assigning a new priority to that vertex or by inv oking a pri-

ority-space operation to change the relative position of the particular priority in the priority space.

When we talk of a priority re-assignment in this section, we include both these ways of changing

a vertex’s priority.

We will consider a class of problem instances of the following kind: initially the DAG will con-

sist of just n isolated vertices; the input sequence will consist of n − 1 edge-insertion requests that

convert this DAG into a chain of n vertices. Note that there is a simple off-line algorithm that is

optimal for the problem instances in this class: the edge-insertion operations are processed to cre-

ate the chain; the chain is then traversed starting at its root and the vertices are assigned priorities

in the sequence from 1 to n, in the order encountered. Because the only requests are edge-

insertion operations, the final prioritization is a correct prioritization of the graph’s vertices at any

intermediate stage in the request sequence. This off-line algorithm makes Θ(n) priority assign-

ments (and has a total running time of Θ(n)).

Consider a specific on-line priority-ordering algorithm. We will show by induction on k that

there exists an input sequence of 2k − 1 edge insertions that creates a chain of 2k vertices for

which the on-line algorithm must have performed at least (k − 1)2k−2 priority re-assignments. It

will follow from this that the competitive ratio of the on-line algorithm must be Ω(log2 n), where

n denotes the input size (n = O(2k)).

For k = 1, the result follows trivially, since (k − 1)2k−2 is zero. Assume that the result holds

true for a specific k. We show that it holds true for k + 1, too. We start with 2k+1 isolated ver-

tices, which we split into 2 groups of 2k vertices each. For each of these two groups of vertices

− 8 −

we insert 2k − 1 edges that make the on-line algorithm perform at least (k − 1)2k−2 priority re-

assignments. (We know that such a sequence of edge insertions exists from the inductive hypoth-

esis.)

At this point, we have two chains, A and B, each of length 2k , and both the chains are correctly

prioritized. Let ai and bi denote the i-th element in the chains A and B, respectively. See the fig-

ure below.

b
1

b
2

b
3

b
2k-1 b

2k

a
1

a
2

a
3

a
2k-1 a

2k

newly inserted edge

Assume without loss of generality that priority(a2k−1) ≤ priority(b2k−1). (If not, exchange the

roles of the chains A and B in what follows.) Since priorities increase within each chain, the pri-

orities of every vertex in the first half of chain A (shown shaded in the above picture) must be less

than or equal to the priority of every vertex in the last half of chain B (shown shaded in the above

picture). Now insert an edge from b2k to a1. The algorithm must re-assign the priorities of every

vertex in either the first half of chain A or the second half of chain B—otherwise, we would end

up with a vertex ai in the first half of A and a vertex b j in the second half of B such that

priority(ai) ≤ priority(b j). In other words, the algorithm must re-assign the priorities of at least

2k−1 vertices.

Thus, over the sequence of 2k+1 − 1 edge insertions the algorithm performs at least

2 × (k − 1)2(k−2) + 2k−1 = k2k−1 priority re-assignments. Thus, it follows that the inductive claim

holds true for k + 1, too.

It follows from this argument that when we restrict attention to the class of problems described

above, the off-line algorithm performs Θ(n) priority assignments, while, in the worst case, any

on-line priority-ordering algorithm must perform Ω(n log2 n) priority-assignment operations.

Thus, the competitive ratio of any on-line priority-ordering algorithm must be Ω(log2 n). From

this we conclude the following:

− 9 −

Theorem. There exists no algorithm, utilizing a functional priority space, for the dynamic prior-

ity-ordering problem that has a constant competitive ratio.

Note that it follows immediately from the above proof that there exists no algorithm for the

dynamic topological-sorting problem that has a constant competitive ratio: (i) the optimal off-line

algorithm produces a topological-sort ordering of the vertices of the DAG in time Θ(n); (ii) a

topological-sort ordering of the vertices of a DAG is also a correct prioritization; hence, in the

worst case, the argument given above shows that any on-line topological-sorting algorithm must

perform Ω(n log2 n) priority-assignment operations.

Corollary. There exists no algorithm for the dynamic topological-sorting problem that has a

constant competitive ratio.

References

1. Alpern, B., Carle, A., Rosen, B., Sweeney, P., and Zadeck, K., “Graph attribution as a specification paradigm,”
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, (Boston, MA, November 28-30, 1988), ACM SIGPLAN Notices 24(2) pp. 121-129 (February
1989).

2. Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., and Zadeck, F.K., “Incremental evaluation of computational
circuits,” pp. 32-42 in Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, (San Fran-
cisco, CA, Jan. 22-24, 1990), Society for Industrial and Applied Mathematics, Philadelphia, PA (1990).

3. Bricklin, D. and Frankston, B., VisiCalc Computer Software Pro gram for the Apple II and II Plus, Personal Soft-
ware, Inc., Sunnyvale, CA (1979).

4. Dietz, P.F. and Sleator, D.D., “Two algorithms for maintaining order in a list,” pp. 365-372 in Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, ACM, New York, NY (May 1987).

5. Hoover, R., “Incremental graph evaluation,” Ph.D. dissertation and Tech. Rep. 87-836, Dept. of Computer Science,
Cornell University, Ithaca, NY (May 1987).

6. Karp, R.M., “On-line algorithms versus off-line algorithms: How much is it worth to know the future?,” pp.
416-429 in Information Processing 92: Proceedings of the IFIP Twelfth World Computer Congress, ed. J.
van Leeuwen, North-Holland, Amsterdam (September 1992).

7. Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley, Reading, MA
(1968, Second Edition: 1973).

8. McGeoch, L.A. and Sleator, D.D. (eds.), On-Line Algorithms, American Mathematical Society, Providence, RI
(1992).

9. Pardo, R.K. and Landau, R., “Process and apparatus for converting a source program into an object program,” U.S.
Patent No. 4,398,249, United States Patent Office, Washington, DC (August 9, 1983).

10. Ramalingam, G. and Reps, T., “On the computational complexity of incremental algorithms,” TR-1033, Computer
Sciences Department, University of Wisconsin, Madison, WI (August 1991).

11. Ramalingam, G. and Reps, T., “On the complexity of incremental computation,” Unpublished report, Computer
Sciences Department, University of Wisconsin, Madison, WI (October 1992).

− 10 −

12. Ramalingam, G., “Bounded incremental computation,” Ph.D. dissertation and Tech. Rep. TR-1172, Computer Sci-
ences Department, University of Wisconsin, Madison, WI (August 1993).

13. Reps, T., Teitelbaum, T., and Demers, A., “Incremental context-dependent analysis for language-based editors,”
ACM Trans. Program. Lang. Syst. 5(3) pp. 449-477 (July 1983).

14. Reps, T., Generating Language-Based Environments, The M.I.T. Press, Cambridge, MA (1984).

15. Reps, T. and Teitelbaum, T., The Synthesizer Generator: A System for Constructing Language-Based Editors,
Springer-Verlag, New York, NY (1988).

16. Sleator, D.D. and Tarjan, R.E., “Amortized efficiency of list update and paging rules,” Commun. of the ACM
28(2) pp. 202-208 (February 1985).

17. Yeh, D., “On incremental evaluation of ordered attributed grammars,” BIT 23 pp. 308-320 (1983).

