
Why software is so bad ...
... and what’s being done to fix it

By Charles C. Mann
TECHNOLOGY REVIEW

June 17 - It?s one of the oldest jokes on the
Internet, endlessly forwarded from e-mailbox
to e-mailbox. A software mogul - usually Bill
Gates, but sometimes another -makes a
speech. ?If the automobile industry had
developed like the software industry,? the
mogul proclaims, ?we would all be driving
$25 cars that get 1,000 miles to the gallon.?
To which an automobile executive retorts,
?Yeah, and if cars were like software, they
would crash twice a day for no reason, and
when you called for service, they?d tell you
to reinstall the engine.?

* Yellow Pages
* Auctions at
uBid

uBid
* Personals
Channel
* Professional
Tips
* Newsletters
* Shopping

 THE JOKE ENCAPSULATES one of the great
puzzles of contemporary technology. In an
amazingly short time, software has become critical
to almost every aspect of modern life. From bank
vaults to city stoplights, from telephone networks to
DVD players, from automobile air bags to air traffic
control systems, the world around us is regulated by
code. Yet much software simply doesn’t work
reliably: ask anyone who has watched a computer
screen flush blue, wiping out hours of effort. All too
often, software engineers say, code is bloated, ugly,
inefficient and poorly designed; even when
programs do function correctly, users find them too
hard to understand. Groaning beneath the weight of
bricklike manuals, bookstore shelves across the
nation testify to the perduring dysfunctionality of
software.
 "Software’s simply terrible today," says Watts
S. Humphrey, a fellow of Carnegie Mellon
University’s Software Engineering Institute who has
written several well-known books on software
quality. "And it’s getting worse all the time." Good
software, in Humphrey’s view, "is usable, reliable,
defect free, cost effective and maintainable. And
software now is none of those things. You can’t take
something out of the box and know it’s going to
work." Over the years, in the view of Edsger W.
Dijkstra, an emeritus computer scientist at the

University of Texas at Austin, the average computer
user "has been served so poorly that he expects his
system to crash all the time, and we witness a
massive worldwide distribution of bug-ridden
software for which we should be deeply ashamed."
 Jim McCarthy is more generous. The founder,
with his wife Michele, of a software quality training
company in Woodinville, WA, McCarthy believes
that "most software products have the necessary
features to be worth buying and using and
adopting." But, he allows, "only the extreme
usefulness of software lets us tolerate its huge
deficiencies." McCarthy sometimes begins talks at
his school with a PowerPoint presentation. The first
slide reads, "Most Software Sucks."

GETTING WORSE, NOT BETTER
 It is difficult to overemphasize the uniqueness
of software’s problems. When automotive engineers
discuss the cars on the market, they don’t say that
vehicles today are no better than they were ten or
fifteen years ago. The same is true for aeronautical
engineers: nobody claims that Boeing or Airbus
makes lousy planes. Nor do electrical engineers
complain that chips and circuitry aren’t improving.
As the engineering historian Henry Petroski
suggested in his 1992 book The Evolution of Useful
Things, continual refinement is the usual rule in
technology. Engineers constantly notice
shortcomings in their designs and fix them little by
little, a process Petroski wryly described as "form
follows failure." As a result, products incrementally
improve.

In the last 15 years
alone, software
defects have
wrecked a satellite
launch, delayed an
airport opening for
a year, destroyed a
Mars mission,
killed four Marines
in a helicopter
crash, induced a
U.S. Navy ship to
destroy a civilian

 Software, alas, seems different. One would
expect a 45-million-line program like Windows XP,
Microsoft’s newest operating system, to have a few
bugs. And software engineering is a newer
discipline than mechanical or electrical engineering;
the first real programs were created only 50 years
ago. But what’s surprising - astonishing, in fact - is
that many software engineers believe that software
quality is not improving. If anything, they say, it’s
getting worse. It’s as if the cars Detroit produced in
2002 were less reliable than those built in 1982.
 As software becomes increasingly important,
the potential impact of bad code will increase to
match, in the view of Peter G. Neumann, a
computer scientist at SRI International, a private

destroy a civilian
airliner, and shut
down ambulance
systems in London,
leading to as many
as 30 deaths.

R&D center in Menlo Park, CA. In the last 15 years
alone, software defects have wrecked a European
satellite launch, delayed the opening of the hugely
expensive Denver airport for a year, destroyed a
NASA Mars mission, killed four marines in a
helicopter crash, induced a U.S. Navy ship to
destroy a civilian airliner, and shut down ambulance
systems in London, leading to as many as 30 deaths.
And because of our growing dependence on the Net,
Neumann says, "We’re much worse off than we
were five years ago. The risks are worse and the
defenses are not as good. We’re going
backwards-and that’s a scary thing."
 Some software companies are responding to
these criticisms by revamping their procedures;
Microsoft, stung by charges that its products are
buggy, is publicly leading the way. Yet problems
with software quality have endured so long, and
seem so intractably embedded in software culture,
that some coders are beginning to think the
unthinkable. To their own amazement, these people
have found themselves wondering if the real
problem with software is that not enough lawyers
are involved.

‘IT’S TOTAL CHAOS’
 Microsoft released Windows XP on Oct. 25,
2001. That same day, in what may be a record, the
company posted 18 megabytes of patches on its
Web site: bug fixes, compatibility updates, and
enhancements. Two patches fixed important
security holes. Or rather, one of them did; the other
patch didn’t work. Microsoft advised (and still
advises) users to back up critical files before
installing the patches. Buyers of the home version
of Windows XP, however, discovered that the
system provided no way to restore these backup
files if things went awry. As Microsoft’s online
Knowledge Base blandly explained, the special
backup floppy disks created by Windows XP Home
"do not work with Windows XP Home."

 Such slip-ups,
critics say, are merely
surface lapses - signs
that the software’s
developers were too
rushed or too careless
to fix obvious defects.

If you found this story
interesting, here’s more
from Technology
Review:

The real problems lie
in software’s basic
design, according to
R. A. Downes of
Radsoft, a software

consulting firm. Or rather, its lack of design.
Microsoft’s popular Visual Studio programming
software is an example, to Downes’s way of
thinking. Simply placing the cursor over the Visual
Studio window, Downes has found, invisibly
barrages the central processing unit with thousands
of unnecessary messages, even though the program
is not doing anything. "It’s cataclysmic. ... It’s total
chaos," he complains.
 The issue, in the view of Dan Wallach, a

computer scientist at Rice University, is not the
pointless churning of the processor - after all, he
notes, "processing power is cheap." Nor is
Microsoft software especially flawed; critics often
employ the company’s products as examples more
because they are familiar than because they are
unusually bad. Instead, in Wallach’s view, the
blooming, buzzing confusion in Visual Studio and
so many other programs betrays how the techniques
for writing software have failed to keep up with the
explosive increase in its complexity.
 Programmers write code in languages such as
Java, C and C++, which can be read by human
beings. Specialized programs known as "compilers"
transform this code into the strings of ones and
zeroes used by computers. Importantly, compilers
refuse to compile code with obvious problems - they
spit out error messages instead. Until the 1970s,
compilers sat on large mainframes that were often
booked days or weeks in advance. Not wanting
errors to cause delay, coders - who in the early days
tended to be trained as mathematicians or physicists
- stayed late in their offices exhaustively checking
their work. Writing software was much like writing
scientific papers. Rigor, documentation and
peer-review vetting were the custom.

OVERWHELMED BY COMPLEXITY
 But as computers became widespread, attitudes
changed. Instead of meticulously planning code,
programmers stayed up in caffeinated all-night
hacking sessions, constantly bouncing results off the
compiler. Again and again, the compiler would spit

Review:
* Home page
* Latest issue
* Two free trial issues

back error messages; the programmers would fix the
mistakes one by one until the software compiled
properly. "The attitude today is that you can write
any sloppy piece of code and the compiler will run
diagnostics," says SRI’s Neumann. "If it doesn’t spit
out an error message, it must be done correctly,
right?"
 As programs grew in size and complexity,
however, the limits of this "code and fix" approach
became evident. On average, professional coders
make 100 to 150 errors in every thousand lines of
code they write, according to a multiyear study of
13,000 programs by Humphrey of Carnegie Mellon.
Using Humphrey’s figures, the business operating
system Windows NT 4, with its 16 million lines of
code, would thus have been written with about two
million mistakes. Most would have been too small
to have any effect, but some - many thousands -
would have caused serious problems.

Advertisement Naturally, Microsoft exhaustively tested NT 4
before release, but "in almost any phase of tests
you’ll find less than half the defects," Humphrey
says. If Microsoft had gone through four rounds of
testing, an expensive and time-consuming
procedure, the company would have found at most
15 out of 16 bugs. "That’s going to leave you with
something like five defects per thousand lines of
code," Humphrey says. "Which is very low" - but
the software would still have as many as 80,000
errors.
 Software engineers know that their code is
often riddled with lacunae, and they have long been
searching for new technologies to prevent them. To
manage increasingly distended projects like
Windows, for example, they have developed a
variety of techniques, of which perhaps the best
known is component-based design. Just as houses
are built with standardized two-by-fours and
electrical fittings, component-based programs are
built out of modular, interchangeable elements: an
example is the nearly identical menu bar atop every
Windows or Macintosh program. Such standardized
components, according to Wallach, are not only
good engineering practice, they are "the only way
you can make something the size of Microsoft
Office work at all." Microsoft, he says, was an
early, aggressive promoter of this approach - "it’s
the single best engineering decision they ever

made."

INADEQUATE PLANNING CITED
 Unfortunately, critics say, the components are
often glued together with no real central plan-as if
contractors tried to erect large structures with no
blueprints. Incredibly, Humphrey says, the design
for large software projects is sometimes "nothing
but a couple bubbles on the back of an envelope."
Worse, for marketing reasons companies wire as
many features as possible into new software,
counteracting the benefits of modular construction.
The most widespread example is Windows itself,
which Bill Gates testified in an April session of the
Microsoft antitrust trial simply would not function
if customers removed individual components such
as browsers, file managers or e-mail programs.
"That’s an incredible claim," says Neumann. "It
means there’s no structure or architecture or rhyme
or reason in the way they’ve built those systems,
other than to make them as bundled as possible, so
that if you remove any part it will all fail."

 The inadequate
design in the final
products, critics argue,
reflects inadequate
planning in the
process of creating
them. According to a
study by the Standish
Group, a consulting
firm in West
Yarmouth, MA, U.S.
commercial software
projects are so poorly
planned and managed
that in 2000 almost a
quarter were canceled
outright, creating no

final product. The canceled projects cost firms $67
billion; overruns on other projects racked up another
$21 billion. But because "code and fix" leads to
such extensive, costly rounds of testing, even
successful projects can be wildly inefficient.
Incredibly, software projects often devote 80
percent of their budgets to repairing flaws they
themselves produced - a figure that does not include
the even more costly process of furnishing product

 Tools and Toys

* High-tech scanners look for
lies

* Review: ’Grand Theft Auto
3’

* USB 2.0 takes on FireWire
* Webcast royalty rates

halved
* MSN, Verizon in broadband

alliance
* Toshiba to offer iPod twin

for PCs
* Integration key to chip

advances

support and developing patches for problems found
after release.
 "System testing goes on for almost half the
process," Humphrey says. And even when "they
finally get it to work, there’s still no design." In
consequence, the software can’t be updated or
improved with any assurance that the updates or
improvements won’t introduce major faults. "That’s
the way software is designed and built everywhere -
it’s that way in spaceships, for God’s sake."

IS SOFTWARE A SPECIAL CASE?
 The potential risks of bad software were grimly
illustrated between 1985 and 1987, when a
computer-controlled radiation therapy machine
manufactured by the government-backed Atomic
Energy of Canada massively overdosed patients in
the United States and Canada, killing at least three.
In an exhaustive examination, Nancy Leveson, now
an MIT computer scientist, assigned much of the
blame to the manufacturer’s inadequate
software-engineering practices. Because the
program used to set radiation intensity was not
designed or tested carefully, simple typing errors
triggered lethal blasts.
 Despite this tragic experience, similar machines
running software made by Multidata Systems
International, of St. Louis, massively overdosed
patients in Panama in 2000 and 2001, leading to
eight more deaths. A team from the International
Atomic Energy Agency attributed the deaths to "the
entering of data" in a way programmers had not
anticipated. As Leveson notes, simple data-entry
errors should not have lethal consequences. So this
failure, too, may be due to inadequate software.

?It?s like a car
manufacturer
saying, ?This year
we?re going to
make a rocket ship
instead of a car.?
Of course they?ll
have problems.?
- CHARLES H.
CONNELL
former principal engineer of Lotus
Development

 Programming experts tend to agree that such
disasters are distressingly common. Consider the
Mars Climate Orbiter and the Polar Lander, both
destroyed in 1999 by familiar, readily prevented
coding errors. But some argue that software simply
cannot be judged, measured and improved in the
same way as other engineering products. "It’s just a
fact that there are things that other engineers can do
that we can’t do," says Shari Pfleeger, a senior
researcher at the Rand think tank in Washington,
DC, and author of the 1998 volume Software
Engineering: Theory and Practice. If a bridge
survives a 500-kilogram weight and a

50,000-kilogram weight, Pfleeger notes, engineers
can assume that it will bear all the values between.
With software, she says, "I can’t make that
assumption-I can’t interpolate."
 Moreover, software makers labor under
extraordinary demands. Ford and General Motors
have been manufacturing the same product - a
four-wheeled box with an internal-combustion
engine - for decades. In consequence, says Charles
H. Connell, former principal engineer of Lotus
Development (now part of IBM), they have been
able to improve their products incrementally. But
software companies are constantly asked to create
products - Web browsers in the early 1990s, new
cell phone interfaces today - unlike anything seen
before. "It’s like a car manufacturer saying, ‘This
year we’re going to make a rocket ship instead of a
car,’" Connell says. "Of course they’ll have
problems."
 "The classic dilemma in software is that people
continually want more and more and more stuff,"
says Nathan Myhrvold, former chief technology
officer of Microsoft. Unfortunately, he notes, the
constant demand for novelty means that software is
always "in the bleeding-edge phase," when products
are inherently less reliable. In 1983, he says,
Microsoft Word had only 27,000 lines of code.
"Trouble is, it didn’t do very much" - which
customers today wouldn’t accept. If Microsoft had
not kept pumping up Word with new features, the
product would no longer exist.
 "Users are tremendously non-self-aware,"
Myhrvold adds. At Microsoft, he says, corporate
customers often demanded that the company
simultaneously add new features and stop adding
new features. "Literally, I’ve heard it in a single
breath, a single sentence. ‘We’re not sure why we
should upgrade to this new release - it has all this
stuff we don’t want - and when are you going to put
in these three things?’ And you say, ‘Whaaat?’"
Myhrvold’s sardonic summary: "Software sucks
because users demand it to."

HIGHER STANDARDS
 In January, Bill Gates issued a call to Microsoft
employees to make "reliable and secure" computing
their "highest priority." In what the company billed
as one of its most important initiatives in years,

Gates demanded that Microsoft "dramatically
reduce" the number of defects in its products. A
month later, the company took the unprecedented
step of suspending all new code writing for almost
two months. Instead, it gathered together
programmers, a thousand at a time, for mass
training sessions on reliability and security. Using
huge screens in a giant auditorium, company
executives displayed embarrassing snippets of
flawed code produced by those in the audience.
 Gates’s initiative was apparently inspired by the
blast of criticism that engulfed Microsoft in July
2001 when a buffer overflow - a long-familiar type
of error - in its Internet Information Services
Web-server software let the Code Red worm
victimize thousands of its corporate clients. (In a
buffer overflow, a program receives more data than
expected - as if one filled in the space for a zip code
with a 50-digit number. In a computer, the extra
information will spill into adjacent parts of memory,
corrupting or overwriting the data there, unless it is
carefully blocked.) Two months later, the Nimda
worm exploited other flaws in the software to attack
thousands more machines.

 Battered by such
experiences, software
developers are
becoming more
attentive to quality.
Even as Gates was
rallying his troops,
think tanks like the
Kestrel Institute, of
Palo Alto, CA, were
developing
"correct-by-construction"
programming tool kits
that almost force
coders to write reliable
programs (see "First

Aid for Faulty Code"). At Microsoft itself,
according to Amitabh Srivastava, head of the firm’s
Programmer Productivity Research Center, coders
are working with new, "higher-level" languages like
C# that don’t permit certain errors. And in May,
Microsoft cofounded the $30 million Sustainable
Computing Consortium - based at Carnegie Mellon
- with NASA and 16 other firms to promote

 On the Frontier

* Tiny surveillance plane
takes flight

* Androids take the field in
RoboCup

* Molding a smaller, faster
chip

* Engineers develop the ’tooth
phone’

* IBM ’punch cards’ set
storage record

* Internet navigators think
small

standardized ways to measure and improve software
dependability. Quality control efforts can pay off
handsomely: in helping Lockheed Martin revamp
the software in its C130J aircraft, Praxis Critical
Systems, of Bath, England, used such methods to
cut development costs by 80 percent while
producing software that passed stringent Federal
Aviation Administration exams with "very few
errors."
 Critics welcome calls for excellence like those
from Kestrel and Microsoft but argue that they will
come to naught unless commercial software
developers abandon many of their ingrained
practices. "The mindset of the industry is to treat
quality as secondary," says Cem Kaner, a computer
scientist and lawyer at the Florida Institute of
Technology. Before releasing products, companies
routinely hold "bug deferral meetings" to decide
which defects to fix immediately, which to fix later
by forcing customers to download patches or buy
upgrades, and which to forget about entirely. "Other
industries get sued when they ignore known
defects," Kaner says. "In software, it’s standard
practice. That’s why you don’t buy version 1.0 of a
program." Exasperatingly, software vendors deliver
buggy, badly designed products with
incomprehensible help files - and then charge high
fees for the inevitable customer service calls. In this
way, amazingly, firms profit from poor engineering
practices.
 When engineers inside a software company
choose to ignore a serious flaw, there are usually
plenty of reviewers, pundits, hackers and other
outsiders who will point it out. This is a good thing;
as Petroski wrote in The Evolution of Useful
Things, "a technologically savvy and understanding
public is the best check on errant design."
Unfortunately, companies increasingly try to
discourage such public discussion. The fine print in
many software licenses forbids publishing
benchmark tests. When PC Magazine tried in 1999
to run a head-to-head comparison of Oracle and
Microsoft databases, Oracle used the license terms
to block it - even though the magazine had gone out
of its way to assure a fair test by asking both firms
to help it set up their software. To purchase
Network Associates’ popular McAfee VirusScan
software, customers must promise not to publish

reviews without prior consent from Network
Associates - a condition so onerous that the State of
New York sued the firm in February for creating an
"illegal ... restrictive covenant" that "chills free
speech." (At press time, no trial date had been set.)
 <!-- var sUA =
navigator.appName.toLowerCase(); if
(sUA.indexOf("webtv") == -1) {

IS LITIGATION THE ANSWER?
 Even a few members of the
software-is-different school believe that some
programming practices must be reformed. "We
don’t learn from our mistakes," says Rand’s
Pfleeger.

?There is no
well-defined
mechanism [in the
software industry]
for investigating
failures and no
mechanism for
ensuring that
people read about
them.?
- SHARI PFLEEGER
senior researcher, Rand

 In 1996, for example, the French Ariane 5
rocket catastrophically failed, exploding just 40
seconds after liftoff on its maiden voyage. Its $500
million satellite payload was a total loss. According
to the subsequent committee of inquiry, the accident
was due to "systematic software design error" -
more precisely, a buffer overflow. In most
engineering fields, Pfleeger says, such disasters
trigger industrywide reforms, as the collapse of the
World Trade Center seems likely to do for
fireproofing in construction. But in software, "there
is no well-defined mechanism for investigating
failures and no mechanism for ensuring that people
read about them." If the French coders had been
drilled, like other engineers, in the history of their
own discipline, the Ariane fiasco might have been
avoided.
 One way or another, some computer scientists
predict, software culture will change. To the
surprise of many observers, the industry is relatively
free of product liability lawsuits. The "I Love You"
virus, for instance, spread largely because Microsoft
- against the vehement warnings of security experts
- designed Outlook to run programs in e-mail
attachments easily. According to Computer
Economics, a consulting group in Carlsbad, CA, the
total cost of this decision was $8.75 billion. "It’s
amazing that there wasn’t a blizzard of lawsuits,"
Wallach says.
 Software firms have been able to avoid product
liability litigation partly because software licenses
force customers into arbitration, often on

unfavorable terms, and partly because such lawsuits
would be highly technical, which means that
plaintiffs would need to hire costly experts to build
their cases. Nonetheless, critics predict, the lawsuits
will eventually come. And when the costs of
litigation go up enough, companies will be
motivated to bulletproof their code. The downside
of quality enforcement through class action
lawsuits, of course, is that groundless litigation can
extort undeserved settlements. But as Wallach says,
"it just might be a bad idea whose time has come."
 In fact, a growing number of software engineers
believe that computers have become so essential to
daily life that society will eventually be unwilling to
keep giving software firms a free legal pass. "It’s
either going to be a big product liability suit, or the
government will come in and regulate the industry,"
says Jeffrey Voas, chief scientist of Cigital Labs, a
software-testing firm in Dulles, VA. "Something’s
going to give. It won’t be pretty, but once
companies have a gun to their head, they’ll figure
out a way to improve their code."

 Copyright © 2002 Technology Review, Inc. All
Rights Reserved.

 Latest reports from Technology Review

 High-tech scanners look for lies
 Review: ’Grand Theft Auto 3’
 Big Brother at the office
 USB 2.0 takes on FireWire
 Summer solstice and the science of seasons
 MSNBC Cover Page

 Blue chips continue tumbling
 Wall Street’s woes threaten economy
 Rite Aid execs indicted for fraud
 Martha Stewart broker put on leave
 R.J. Reynolds slapped with damages
 MSNBC Cover Page

 MSNBC VIEWERS’ TOP 10

 Would you recommend this story to other viewers?
not at all 1 - 2 - 3 - 4 - 5 - 6 - 7 highly

MSNBC is optimized for
* Microsoft Internet Explorer
* Windows Media Player

* MSNBC Terms,

 Conditions and
Privacy © 2002

Cover | News | Business | Sports | Local News | Health | Technology & Science | Living | Travel

TV News | Opinions | Weather | Comics

Information Center | Help | News Tools | Jobs | Write Us | Terms & Conditions | Privacy

Advertisement

HandEra 330 Handheld
$299.00

CDW.com
More Personal digital

assistants

