
1

maker4\infmatic:Version 1.3.
Another look at computability

Florentin Ipate and Mike Holcombe,
Fomal Methods and Software Engineering Research Group (Formsoft),

Department of Computer Science,
University of Sheffield, England,U.K.

Correspondence to: M. Holcombe or F. Ipate, Department of Computer
Science, University of Sheffield, Regent Court, 211 Portobello Street,
Sheffield S1 4DP, England, U.K. Email: M.Holcombe@dcs.shef.ac.uk
or F. Ipate@dcs.shef.ac.uk

Abstract. The theory of computable functions is well known and has
given rise to many classes of computational models of varying power
and usefullness. We take another look at this subject using the idea of a
generalised machine - the X-machine - to provide some further insights
into the issue and to discuss an elegant general approach to the ques-
tion of classifying computational models including some of the so-
called "Super-Turing" models.

This paper investigates a number of classes of X-machines. It con-
siders their relative computational capabilities and contrasts these with
other important models. It is shown that a certain class of these
machines - the 2-stack straight move stream X-machine - computes pre-
cisely the class of partial recursive functions.

The importance of this work to the theory of testing of systems is
stressed.

1. Introduction.

The Turing model [1], [2], has been a cornerstone of the theory of computation for
many years and the Chomsky hierarchy of machines a useful mechanism for categoris-
ing machines and languages of different capabilities. The theory of X-machines [1],
[3], however, offers an alternative approach which has proved valuable and enlighten-
ing. For most purposes the Turing model is too restrictive and low-level for serious
application as a vehicle for the description and analysis of computational devices.
Howevere, the X-machine model offers several important benefits over the Turing
model:

1. it is a convenient abstraction that enables different classes of machines to be
defined in terms of classes of simple transition functions, thus providing a more
unified and coherent approach to the machine hierarchy problem;
2. the data abstraction capabilities of the model make it feasible for use as a basic
universal specification and analysis language [3];
3. the approach provides a general framework for the discussion of computational
models of greater generality than the Turing model, for example continuous, highly
parallel algorithms which are "super-Turing" as in [4];
4. the precision with which the model defines what is practically implementable
with current technology allows for the discussion of formal refinement processes
and for the verification that implementations satisfy their behavoural requirements
as expressed in terms of X-machine specifications, [5].

 This has some important application potential, also, in the theory of system and soft-

2

ware testing where assumptions have to be made about the form of an implementation
which must depend on the existence of a feasible computational model as a basis for
the representation of this implementation. Previous approaches required the assump-
tion that the implementation was a machine of a particular type, for example a finite
state machine, before the question of whether the implementation met its specification
could be discussed. Using the X-machine model, such approaches can be enhanced
and generalised [6], [7].

We demonstrate some important properties of a natural class of X-machines in terms
of their computational capabilities. Thus, for example, the natural classes of X-
machines that model computational systems that process a stream of input data into a
stream of output data are defined and examined. These, so called, stream X-machines,
generalised stream X-machines and straight-move stream X-machines have a number
of important properties which relate to other approaches to the modelling of computa-
tion.

 The principal result is that:
• 2-stack straight move stream X-machines compute precisely the class of par-
tial recursive functions;

2. X-machines - a general computational model.

We begin with a number of essential definitions and notational matters.

2.1 The X-machine model
The original definition of the X-machine is due to Samuel Eilenberg, [1], where it was
presented as an alternative to the Finite State Machine, Pushdown Machine, Turing
Machine and other standard types of machine. The theory was not developed to any
great extent in this source, however. Here we present the definition of an X-machine in
its most general form - although not all the features are needed for our purposes.

Definition 2.1.1:
An X-Machine is a 10-tuple M = (X, Y, Z, α, β, Q, Φ, F, I, T), where
1. X is the fundamental data set that the machine operates on.
2. Y and Z are the input and the output sets, respectively.
3. α and β are the input and the output relations respectively, used to convert the input
and the output sets into, and from, the fundamental set, i.e.
 α: Y ↔ X, β: X ↔ Z
4. Q is the (finite) set of states.
5. Φ is the type of M, a set of relations on X, i.e.
 Φ: P (X ↔ X)
The type of the machine is the class of relations (usually partial functions) that consti-
tute the elementary operations that the machine is capable of performing. P S denotes
the power set of S. Φ is viewed as an abstract alphabet. Φ may be infinite, but only a
finite subset Φ' of Φ is used (this is because M has only a finite number of edges
despite the infinite number of labels available).
6. F is the 'next state' partial function.
 F: Q → (Φ → P Q)
So, for state q ∈ Q, F(q): Φ → P Q is a partial function.
However, when it is convenient, F can be treated like a partial function with two argu-
ments, i.e. F(q, ϕ) = (F(q))(ϕ). F is often described by means of a state-transition dia-
gram.
7. I and T are the sets of initial and terminal states respectively.

3

 I ⊆ Q, T ⊆ Q

Before we continue, we make some simple observations. It is sometimes helpful to
think of an X-machine as a finite state machine with the arcs labelled by functions
from the type Φ. As we shall define formally later, a computation takes the form of a
traversal of a path in the state space and the application, in turn, of the path labels
(which represent basic processing functions or relations) to an initial value of the data
set X. Thus the machine transforms values of its data set according to the relations or
functions called during the state space traversal. The role of the input and output
encoding relations is not crucial for many situations but it does provide a general inter-
face mechanism that is useful in a number of applications.

Definition 2.1.2:
If q, q' ∈ Q, ϕ ∈ Φ and q' ∈ F(q, ϕ), we say that ϕ is the arc from q to q', represented
thus:

Definition 2.1.3:
If q, q' ∈ Q are such that there exist q1,..., qn ∈ Q and ϕ1,..., ϕn+1 ∈ Φ with

then (〈q, q1,..., qn, q'〉, 〈ϕ1,..., ϕn+1〉) is the path from q to q'. Each path c is labelled
with |c|, where
 |c| = ϕ1... ϕn+1:X→X
is the relation computed by the machine when it follows that path.
When the state sequence is not relevant we shall refer to a path as the sequence of rela-
tions, i.e. c = ϕ1... ϕn+1.
A successful path is one that starts in an initial state (in I) and ends in a final one (from
T).
A loop is a path whose initial state is also terminal (i.e. a path from a state to itself).

Definition 2.1.4:
The behaviour of M is the relation
 | M |: X→X
defined as
 | M | = ∪ |c|
with the union extending over all the successful paths c in M .

Given y ∈ Y, the operations of the X-machine M on Y consist of:
1. Picking a path c, from a start state qi (qi ∈ I), to a final state qt (qt ∈ T) i.e.

|c|:

2. (Optional) Applying α to the input to convert it to the internal type X.
3. Applying |c|, if it is defined for α(y). Otherwise, go back to step 1.
4. (Optional) Applying β to get the output.
Therefore, the operation can be summarised as β(|c|(α(y))). Note that the output may
be non-deterministic or produce a set of outputs from a given input.

q q′φ

q q1 q2 ... qn. q′
φ1 φ2 φn+1

qi qt→

4

Definition 2.1.5:
The composite relation fM given by:

α ˚ |M |˚ β :Y → Z, ie.

is called the relation computed by M .

If M is a X-machine acceptor (i.e. Γ = ∅), then the relation (partial function) f com-
puted by it will have only one output value, i.e.
  c, if x ∈ dom f
f(x) = 
  ∅, otherwise
where c is an arbitrary constant.
We call L = dom f the language accepted by the machine M .

Now suppose that X is a fixed data set and Φ, Φ’ are types of relations on X such that
Φ ⊆ Φ’ then the class of relations computed by X-machines of type Φ will be contained
in the class of relations computed by X-machines of type Φ’. Thus it is conceivable
that the study of the relations computed by X-machines of different structures and
types provides a mechanism for classifying a wide range computable relations in a
convenient way. For example, we would be interested in defining a class of partial
functions that are computable by one class of X-machines and then to use this class of
partial functions as the elements of the sets Φ that define a more general class of, say,
X’-machines. By carefully defining the classes of machines and the corresponding par-
tial functions computed by them we have the structure for a framework for discussing
many types of computational model that extend far beyond traditional Turing-based
models.

There are a number of special classes of X-machines that are of interest here. We dis-
cuss the relative computational power of these classes of machines both from the point
of view of what relations they can compute but also what sort of closure properties
they possess - for example if the functions or relations of the type Φ satisfy some prop-
erty is this property shared by the functions or relations computed by the machine?

Before proceeding any further we shall describe a general class of X-machines to
which we shall be referring in this paper.

We let Y = Σ*, Z = Γ*, where Σ (input alphabet) and Γ (output alphabet) are finite
alphabets. Thus relations f: Σ* → Γ* will be computed. The set X will have the form
 X = Γ* × M × Σ*,
where M is a monoid called memory.
In practice M will usually be a product Ω1

* × ... × Ωr
*, where Ω1, ... Ωr are finite

alphabets: in this case we shall say that X has r+2 registers of which one (the last one)
is the input register, one (the first one) is the output register and the intermediate r reg-
isters are memory registers.
For x ∈ X, x = (g, m, s) the values of output register, input register and memory will
be referred to as s = In(x), g = Out(x), m = Mem(x) respectively. Therefore, we have
Out: X → Γ*, In: X → Σ*, Mem: X → M, Out(g, m, s) = g, In(g, m, s) = s,
Mem(g, m, s) = m ∀ g ∈ Γ*, s ∈ Σ*, m ∈ M.

Y X X Z
α |M | β

5

This model is sufficiently general to model many common types of machine from finite
state machines (where the memory is trivial) to Turing machines (where, as we shall
see, the memory is a model of the tape), see [1].

2.2. Deterministic X-machines

The aim of defining deterministic machines is to compute partial functions rather than
relations. In a deterministic X-machine, there is at most one possible transition for any
state q and any x ∈ X.

Definition 2.2.1:
An X-machine M is called deterministic if:

1. α and β are partial functions, not relations:
 α: Y → X, β: X → Z
2. Φ contains only partial functions on X rather than relations:
 Φ: P (X →X)
3. F maps each pair (q, ϕ) ∈ Q × Φ onto at most a single next state:
 F: Q → (Φ → Q)
A partial function is used because every ϕ ∈ Φ will not necessarily be defined as the
label to an edge in every state.
4. I contains only one element (i.e. I = {qo}, where qo ∈ Q)
5. If ϕ and ϕ' are distinct edges emerging from the same state then dom ϕ ∩ dom ϕ' =

∅
If we consider F as a function with two arguments, the condition above can be written
as:
∀ q ∈ Q, ϕ, ϕ' ∈ Φ, if (q, ϕ), (q, ϕ') ∈ dom F then dom ϕ ∩ dom ϕ' = ∅.

These conditions will frequently (but not always) ensure f = α˚ |M |˚ β is a partial func-
tion. However, if a deterministic X-machine satisfies an additional condition, it will
compute a partial function.

Definition 2.2.2:
A path |c| = ϕ1... ϕn+1:X→X is called trivial, if ∃ x ∈ dom |c| such that In(|c|(x)) =
In(x). In other words, a trivial path is one along which the machine does not change the
value of the input register for some values of X, while possibly changing the output
and memory registers.

Then, we have the following straightforward result:

Proposition 2.2.3 [1]:
If M is a deterministic stream X-machine in which no non-trivial path connects two
terminal states, then M computes a partial function.

Before defining the two X-machine models that we shall be concentrating on in this
paper, we introduce some further notations. These allow us to define a number of very

q

p

p’

ϕ

ϕ'

6

simple functions that add and remove, where possible, symbols from either end of a
string.
Let Σ an alphabet and let s ∈ Σ*. Then we define the functions
Ls , Rs : Σ* → Σ* by

Ls (x) = sx, Rs (x) = xs ∀ x ∈ Σ*
and the partial functions
L- s , R- s : Σ* → Σ* by

L- s (x) = s-1 x (i.e. dom L- s = {s}Σ* and L- s (sx) = x ∀ x ∈ dom L- s)

R- s (x) = xs-1 (i.e. dom R- s = Σ*{s} and R- s (xs) = x ∀ x ∈ dom R- s)
Note: Here sx is s concatenated to x (or in some notations s::x).
Obviously, Ls Lt = Lt s, Rs Rt = Rs t , L- s L- t = L- t s , R- s R- t = R- s t ∀ s, t ∈ Σ*.
We shall denote by I: Σ* → Σ* the identity function.

3. Stream X-machines and their generalisations.

A number of important classes of X-machines have been identified and studied. Typi-
cally the classes are defined by restrictions on the underlying data set X and the type
Φ of the machines. We introduce three such classes.

3.1. (Generalised) stream X-machines; straight move stream X-machines
The main type of X-machines that we consider here are those that process their input
streams in a straightforward manner, producing, in turn, a stream of outputs and a reg-
ularly updated internal memory state. The power of this subclass of X-machines is
considerable and they are able to model many practical computing situations. There
are some natural restrictions that must be placed on the form of the processing func-
tions ϕ to ensure that the machines behave in a sensible way.

Definition 3.1.1:
Let Σ and Γ two finite alphabets, and let δ ∉ Σ ∪ Γ (we call δ the blank or end marker),
Σ' = Σ ∪ {δ}, Γ' = Γ ∪ {δ}.
Then, an X-machine M = (Q, Σ, Γ, M, α, β, Φ, F, Qo, T, mo) with
X = Γ'* × M × Σ'* , is called a stream X-machine if:

1. The type is defined as
Φ = {Rγ | γ ∈ Γ} × ΦΜ × {L- σ | σ ∈ Σ} ∪ {R δ} × ΦΜ × {L- δ},
where ΦΜ = {φ| φ: M ↔ M} is a set of relations on M.

Therefore, each transition function must remove the head of the input stream and add
an element to the rear of the output stream, and, furthermore, no transition is allowed
to use information from the tail of the input or any of the output. Additionally, when-
ever the end marker δ is processed, the output is also δ.

2. The input and output codes
 α: Σ* → X, β: X → Γ* are defined by
 α(s) = (1, mo, R δ (s)) ∀ s ∈ Σ*,

 β(g, m, s) = R- δ (g), if s = 1;
 = ∅, otherwise
 ∀ g ∈ Γ*, where mo ∈ M is called the initial value of the memory and 1 is
the empty string.

For any input string s ∈ Σ* and any corresponding successful path |c|, the computation

7

will be :

 with g ∈ Γ*. Therefore the partial function computed by the machine f = α ˚ |M |˚ β
has type f: Σ* → Γ* (with no occurrence of δ in the alphabets). The end marker could
be totally eliminated and α and β could be defined as:
 α(s) = (1, mo, s) ∀ s ∈ Σ*,
 β(g, m, s) = g, if s = 1
 = ∅, otherwise
A stream X-machine without end marker could be easily transformed into one with
end marker, but not vice versa.

If the type is Φ = {R g | g ∈ Γ*} × ΦΜ × {L- σ |σ ∈ Σ} ∪ {R δ} × ΦΜ × {L- δ} then the
X-machine is called a generalised stream X-machine. Therefore, the output at each
state transition can be a string from Γ* rather then just a symbol from Γ.

Empty input moves (i.e. moves where the input string remains unchanged) are not
allowed in (generalised) stream X-machines. If we accept such moves, we get a more
general X-machine model: -

Definition 3.1.2:
Let ΦΜ = {φ| φ: M ↔ M} be a set of relations on M and consider the following exten-
sions to the original definition:

1. we expand the type Φ by considering Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4 where:
Φ1 = {R γ | γ ∈ Γ ∪ {δ}} × ΦΜ × {L- σ | σ ∈ Σ ∪ {δ}}, i.e. ϕ ∈ Φ1 reads the
head of the input stream (possibly δ) and adds an output character (possibly δ)
to the end of the output string.
Φ2 = {I} × ΦΜ × {L- σ | σ ∈ Σ ∪ {δ}}, i.e. ϕ ∈ Φ2 reads the head of the input
stream (possibly δ) and leaves the output string unchanged.
Φ3 = {R γ | γ ∈ Γ ∪ {δ}} × ΦΜ × {Ι}, i.e. ϕ ∈ Φ3 leaves the input string
unchanged while adding an output character (possibly δ) to the end of the out-
put string.
Φ4 = {I} × ΦΜ × {I}, i.e. ϕ ∈ Φ4 leaves both the input and output strings
unchanged.

2. We further assume that ∀ q ∈ T, ∀ ϕ ∈ Φ3 ∪ Φ4 then
(q, ϕ) ∉ dom F.
(Therefore, no empty input transition is allowed from a terminal state.)

3. Any path p from an initial state to a terminal one (i.e. from q to q' where
q ∈ Qo, q' ∈ T) has the form p = ϕ1... ϕi... ϕj... ϕn , for some i ≤ j, where

a. if i < j, ϕi ∈ ({R γ | γ ∈ Γ} ∪ {Ι}) × ΦΜ × {L- δ},
 ϕj ∈ {R δ} × ΦΜ × ({L- σ | σ ∈ Σ} ∪ {Ι}).
 if i = j, then ϕi ∈ {R δ} × ΦΜ × {L- δ}.

b. for k ∈ {1, ..., j-1} - {i},

s sδ gδ g
α β |c|

8

ϕk ∈ ({R γ | γ ∈ Γ} ∪ {Ι}) × ΦΜ × ({L- σ | σ ∈ Σ} ∪ {Ι}).

c. for k ∈ {j+1, ..., n}, ϕk ∈ {Ι} × ΦΜ × ({L- σ | σ ∈ Σ} ∪ {Ι}).
In other words, for any path which starts in an initial state and ends in a termi-
nal one, the machine reads only one blank (δ) and produces only one blank (δ)
in this order. Furthermore, no other outputs are produced after the blank (δ) is
written at the end the output string.

Then the tuple M = (Q, Σ, Γ, M, α, β, Φ, F, Qo, T, mo), where α and β are defined as
above, is called a straight-move stream X-machine.

Φ1 is called the set of non-empty input and non-empty output operations.
Φ2 is called the set of non-empty input and empty output operations.
Φ3 is called the set of empty input and non-empty output operations.
Φ4 is called the set of empty input and empty output operations.

A straight-move stream X-machine can process the empty string 1 and can produce 1
as the output. It is fairly clear that a straight move stream X-machine computes a rela-
tion f: Σ* → Γ*, where f = α ˚ |M |˚ β.
Note: The empty string 1 should not be confused with the end marker δ.

Obviously, the straight move stream X-machine model is more general than the gener-
alised stream X-machine one. Conversely, the generalised stream X-machine is a more
efficient or a faster version of the straight move stream X-machine. No empty input
moves are allowed in a generalised stream X-machine and the machine reads a charac-
ter every time a move is performed. Even more importantly, the generalised stream X-
machine model ensures that for any input string the machine will stop its computation
in a finite time, therefore avoiding the 'halting problem'. For an input string s of length
n, the machine will give the result f(s) in at most n+1 moves. We formalise this idea in
what follows.

Definition 3.1.3:
The type Φ is called fully computable if ∀ ϕ ∈ Φ, then there exists an algorithm A such
that A computes ϕ and ∀ x ∈ X, x will cause A to stop in a finite time (i.e. ¬ ∃ x ∈ X
such that A will run forever while computing ϕ(x)).

Note: We consider an algorithm as being a procedure involving a finite number of
basic operations. This notion is in some way ambiguous since it is dependent on the
basic operations allowed. This can be addressed, according to Church's thesis, by con-
sidering the Turing machine as the general model for an algorithm. Then, for a deter-
ministic X-machine (this is the case we shall be addressing in this paper) our definition
of full computability becomes:
the type Φ is called fully computable if ∀ ϕ ∈ Φ, ϕ is a partial recursive function and
dom ϕ is a recursive set.
However, the more general definition above is sufficient for our purpose at the
moment.

Proposition 3.1.4:
Let M = (Q, Σ, Γ, M, α, β, Φ, F, Qo, T, mo) be a generalised stream X-machine with
Φ fully computable. Then, the relation f: Σ* → Γ* computed by M is fully comput-

9

able. Hence, the class of fully computable relations is closed under the generalised
stream X-machine operator.

Proof:
We define k = card Φ' where Φ' is the subset of Φ used by M. Let x = σ1 ... σn, with
σ1, ..., σn ∈ Σ. Hence α(x) = (1, mo, σ1... σnδ). The number of paths determined

through the machine by x is N ≤ kn+1. Therefore, ϕ(x) is determined by applying at

most N(n+1) ≤ (n+1)kn+1 algorithms (i.e. an algorithm for each ϕ which processes σi
or δ).
Hence f = α ˚ |M |˚ β is fully computable. ◊

Obviously, the proposition above is not true for a straight move stream X-machine
since it can contain loops formed only by empty input operations and the machine can
run forever following such loops.

3.2. Deterministic (straight move) stream X-machines

From definition 2.2.1, it follows that a deterministic generalised stream X-machine is
one which has only one transition for a certain triplet (q, m, σ) ∈ Q × M × Σ',
i.e. ∀ (q, m, σ) ∈ Q × M × Σ' and ϕ, ϕ' ∈Φ, if Γ'* × {m} × {σ}Σ'* ∩ dom ϕ ≠ ∅ and
Γ'* × {m} × {σ}Σ'* ∩ dom ϕ' ≠ ∅, then either (q, ϕ) ∉ dom F or (q, ϕ') ∉ dom F. Here
Φ is a set of partial functions.

A deterministic straight move stream X-machine will satisfy the following:

1. there is only one possible transition for any triplet (q, m, σ) ∈ Q × M × Σ',
i.e. ∀ (q, m, σ) ∈ Q × M × Σ' and ϕ, ϕ' ∈ Φ1 ∪ Φ2, if Γ'* × {m} × {σ}Σ'* ∩
dom ϕ ≠ ∅ and Γ'* × {m} × {σ}Σ'* ∩ dom ϕ' ≠ ∅, then either (q, ϕ) ∉ dom F
or (q, ϕ') ∉ dom F.

2. there is no pair (q, m) ∈ Q × M where both a letter σ ∈ Σ' and the empty
input string 1 can be read, i.e. ∀ (q, m, σ) ∈ Q × M × Σ' and ϕ ∈ Φ1 ∪ Φ2, ϕ'
∈ Φ3 ∪ Φ4, if Γ'* × {m} × {σ}Σ'* ∩ dom ϕ ≠ ∅ and Γ'* × {m} × Σ'* ∩ dom
ϕ' ≠ ∅ then (q, ϕ) ∉ dom F or (q, ϕ') ∉ dom F.

3. there is no pair (q, m) ∈ Q × M where two different empty input transitions
are allowed, i.e. ∀ (q, m) ∈ Q × M and ϕ, ϕ' ∈ Φ3 ∪ Φ4, if Γ'* × {m} × Σ' ∩
dom ϕ ≠ ∅ and Γ'* × {m} × Σ'* ∩ dom ϕ' ≠ ∅, then (q, ϕ) ∉ dom F or (q, ϕ)
∉ dom F.

Obviously, no trivial paths exist in a stream X-machine or a generalised stream X-
machine and no trivial paths start from a terminal state in a deterministic straight move
stream X-machine. Hence:

Proposition 3.2.1:
Any deterministic stream X-machine, generalised stream X-machine or straight move
stream X-machine computes a partial function.

However, stream X-machines and generalised stream X-machines compute special

10

classes of (partial) functions, as we shall see in the following subsection.

3.3. Stream functions; generalised stream functions

Each class of machine defines a type of function or relation between the input alphabet
and the output alphabet. If there are natural mathematical descriptions of these func-
tions this will be an indication of the extent to which the notions introduced in this
paper are natural ones.

Definition 3.3.1:
Let f: Σ* → Γ* be a partial function. Then f is called segment preserving if:
 ∀ s, t ∈ Σ*, if s, st ∈ dom f then ∃ u ∈ Γ* such that f(st) = f(s)u.

Definition 3.3.2:
Let f: Σ* → Γ* be a partial function. If |f(s)| = |s| ∀ s ∈ dom f then f is called length
preserving.
Note: |s| denotes the length of the string s.

Definition 3.3.3:
Let f: Σ*→ Γ* be a partial function. Then f is called a partial stream function if f is
both segment preserving and length preserving.

If we replace the length preserving condition by a Lipschitz type condition, we get the
definition of a partial generalised stream function;

Definition 3.3.4:
Let f: Σ* → Γ* be a segment preserving partial function. Then f is called a partial gen-
eralised stream function if:
∃ k ∈ N such that ∀ s, t ∈ Σ*, if s, st ∈ dom f, then ||f(st)| - |f(s)|| ≤ k|t|.

Definition 3.3.5:
A partial (generalised) stream function f: Σ* → Γ* is complete if:
∀ s, t ∈ Σ*, if st ∈ dom f, then s ∈ dom f.

We have the following characterisation of deterministic (generalised) stream X-
machines:

Proposition 3.3.6:
1. Any deterministic stream X-machine computes a partial stream function.
2. Any deterministic generalised stream X-machine computes a partial generalised
stream function.
3. Any stream X-machine (generalised stream X-machine) without end marker and
with all the states terminal (T = Q) computes a complete partial stream function (par-
tial generalised stream function).

Proof:
By induction on t it follows that f(st) = f(s)u ∀ s, t ∈ dom f .
2, 3. If the machine is a generalised stream X-machine, then we take
k = max {|g| | (R g ,φ, L- σ) ∈ Φ' }, where Φ' is the finite set of Φ used to label the arcs
of the machine.
3. By induction on t it follows that if st ∈ dom f, then s ∈ dom f. ◊

11

Thus we see the precise connection bewteen the types of machine discussed and the
types of sequential function.

3.4. Periodic straight move stream X-machines

It is clear that a straight move stream X-machine does not necessarily compute a par-
tial generalised stream function. However, there is a class a straight move stream X-
machines which does.

Definition 3.4.1:
A straight move stream X-machine M = (Q, Σ, Γ, M, α, β, Φ, F, Qo, T, mo) is called
periodic if:

1. if p = ϕ1...ϕn is a path with ϕ1∈ {R δ} × ΦΜ × ({L- σ |σ∈Σ ∪{δ}} ∪ {Ι}),
then
ϕi ∈ ({R δ} ∪ {Ι}) × ΦΜ × ({L- σ |σ ∈ Σ ∪ {δ}} ∪ {Ι}) for i ∈ {2, ..n}. In
other words, the machine cannot produce any output after a blank (δ) has been
read except the blank (δ) .
2. if p = ϕ1 ... ϕn is a loop (i.e. a path from a state q to itself) with ϕi ∈ Φ3 ∪
Φ4,
 i = 1, ..., n, then ϕi ∈ Φ4, i = 1, ..., n. Therefore, no loop on empty input opera-
tions can produce any output.

The periodicity condition does not really affect the computation power of a straight
move stream X-machine much since, for example any straight move stream X-machine
acceptor (i.e. the output alphabet is Γ = ∅) is periodic. However, it ensures that the
function computed is a partial generalised stream function.

Proposition 3.4.2:
Any deterministic periodic straight move stream X-machine computes a partial gener-
alised stream function.

Proof:
It follows by induction. The first condition ensures that the function is segment pre-
serving, the second one that the Lipschitz condition is satisfied. ◊

4. (Straight-move) stream X-machines with stacks

In this section we impose a particular structure on the memory of the stream X-
machine and explore the consequences.

4.1. k-stack X-machines
It is fairly clear that the computational power of the X-machine model will depend on
the type Φ that the machine works on (one could, for example, use non-computable
transition functions, but that is neither useful nor desirable in this context). In what fol-
lows we shall introduce and examine several X-machine models whose memory struc-
ture is a stack or a finite set of stacks. First, the basic operations on stacks will be the
usual 'push' and 'pop'. Then we shall use more complex functions on the memory struc-
ture, but throughout we restrict ourselves to using those basic functions that can be
computed by very simple X-machines.

12

Definition 4.1.1:
Let M = (Q, Σ, Γ, M, α, β, Φ, F, Qo, T, mo) be an X-machine. If

1. M = Ω1* × ... × Ωk* (hence X = Γ* × Ω1* × ... × Ωk* × Σ*, where Ω1, ...
Ωk are finite alphabets
2. Φ = {ϕ = (φΓ, φ1,..., φk, φΣ,)| φΓ : Γ*→ Γ*, φΣ : Σ*→ Σ*, φi: Ωi*→ Ωi* are
partial functions, φ ∈ Φi}, where Φi = {R- u |u∈ Ωi} ∪ {R u |u ∈ Ωi} ∪ {I, E},
i = 1, ..., k

then M is called a k-stack X-machine.
Note: The partial function E: Σ* → Σ* defined by dom E = {1} and E(1) = 1 checks
whether the stack is empty or not.

From the definition above, it is clear that
1. a k-stack stream X-machine has the type:

Φ = {R γ |γ ∈ Γ} × Φ1 ×...× Φk × {L- σ |σ∈ Σ} ∪ {R δ} × Φ1 ×...× Φk × {L- δ}
2. a k-stack straight move stream X-machine has the type
Φ = {Ry } × Φ1 × ... × Φk × {L- x }, where x ∈ Σ' ∪ {1} and y ∈ Γ' ∪ {1}.

Theorem 4.1.2:
Let Σ and Γ be two alphabets and let f: Σ* → Γ* be a partial recursive function, then
there exists a deterministic 2-stack straight move stream X-machine M which com-
putes f.

Proof:
If f is recursive enumerable, there exists then a Turing machine T with Q = {q1,..., qn}
the state set (q1 is the Start state), Ω the set of tape symbols (Γ ∪ Σ ⊆ Ω) which com-
putes f. Hence, if t is the initial value of the tape and t' the end one Rmb(t') = f(t), where
Rmb: Γ'* → Γ* is a function which removes all the occurrences of the blank symbol δ
from the tape. Any transition of T can be described as (q, a) → (q', a', d), where q is the
state T currently is in, a the character read, q' the next state, a' the replacement charac-
ter and d ∈ {L, R} is the direction the tape head moves in.
We can now simulate the Turing machine T on the following straight move stream X-
machine M :
1. The set of states is Q' = {q1', q1", ..., qn', qn"} ∪ Q". The states set of M is obtained
by duplicating each state from Q and adding some extra states. The set Q" will explic-
itly follow from the construction of M . M will be in the state qi', i = 1, ..., n if T is in
the state qi and it has not read a blank (δ) from the tape (therefore the Turing machine
has not finished reading the input sequence); M will be in the state qi", i = 1, ..., n if T
is in the state qi and it has read a blank (δ) from the tape (the Turing machine has read
the whole input sequence).
2. The initial state is q1' and the set T' = {qi"| qi is a Halt state of T}
3. The memory is M = Ω'* × Ω'*, where Ω' = Ω ∪ {δ}. The values of the two stacks s
and s' will hold the tape of the Turing machine up to the rightmost location of the tape
that has been read by the tape head, i.e. if t = a1 ...aj, (a1,..., aj ∈ Ω') , is the tape up to
the rightmost location that has been read by the head tape and i is the current position
of the tape head, i ≤ j, then s = a1 ...ai-1, s' = aj ...ai. Hence t = s rev(s'), where rev(x)
denotes the reverse of the string x.
The initial value of the memory is mo = (1, 1).
4. Φ and F results by the following simulation of T on M :
a. For a transition (q, σ) → (p, b, R) in T , σ ∈ Σ, b ∈ Ω' the corresponding transitions

13

in M are:
F(q', ϕ1) = p', F(q', ϕ2) = p', F(q", ϕ2) = p", where
ϕ1 = (I, Rb, E, L- σ), ϕ2 = (I, Rb, R- σ, I).
Therefore, if T has not finished reading the input string (M is in state q') and s' = 1
then M reads a new input character. Otherwise, no input is read and M only operates
on its stacks.
b. For a transition (q, a) → (p, b, R) in T , a ∈ Ω - Σ, b ∈ Ω' the corresponding transi-
tion in M is:
F(q", ϕ3) = p", where
ϕ3 = (I, Rb, R- a , I).
Since a is not an input character, T has finished reading the input string, therefore M
operates only on its stacks.
c. For a transition (q, δ) → (p, b, R) in T , b ∈ Ω' the corresponding transitions in M
are:
F(q', ϕ4) = p", F(q", ϕ5) = p", where
ϕ4 = (I, Rb, E, L- δ), ϕ5 = (I, Rb, R- δ, I).
Therefore M can read the end marker of the input string only if a δ has not been read
yet.
d. The transitions (q, σ) → (p, b, R), (q, a) → (p, b, R), (q, δ) → (p, b, R),
σ ∈ Σ, a ∈ Ω - Σ, b ∈ Ω' can be obtained from the ones above by replacing ϕi, i = 1, ...,

5 by ϕi' = ϕi Tf2, where Tf is the function which transfers any character from the first
stack to the second one. Such transition can be transformed into a sequence of 3
straight move stream X-machine operations by adding two new states r, r' ∈ Q". For

example F(q', ϕ1Tf2) = p' is equivalent to F(q', ϕ1) = r, F(r, ϕ) = r', F(r', ϕ) = p', where
ϕ ∈ {(I, R- a , R a , I)| a ∈ Ω'} (i.e. ϕ takes all the values of the set {(I, R- a , R a , I)| a
∈ Ω'}).

In order to complete our constructions, we have to deal with the following two prob-
lems:
a. M has to read the entire input sequence even if T halts earlier. This can be easily
addressed by adding one extra state ri ∈ Q" for each i ∈ {1, ..., n} such that qi is a Halt
state of T and the following transitions: F(qi', ϕ) = qi', F(qi', ϕ') = ri, F(ri, ϕ") = ri, F(ri,
ϕ'") = qi", i = 1, ..., n, where ϕ ∈ {(I, R a , R- a , I) | a ∈ Ω'}, ϕ' = (I, I, E, I), ϕ" ∈ {(I,
R σ , I, R - σ)| σ ∈ Σ}, ϕ'" ∈ {(I, R δ , I, R - δ)| σ ∈ Σ}. Therefore if T has halted with-
out having finished reading the input string, M will store the part of the tape already
read into the first stack, read the remaining part (until a δ is reached) and store the
remaining part of the tape into the first stack. Since no path can leave a Halt state in T,
M remains deterministic.
b. So far M does not produce any outputs. Therefore, any transition of the type F(q, ϕ)
= qi", where q ∈ Q' (Q' is the state set of M constructed so far), qi" ∈ T' (i.e. terminal
state) has to be replaced by F(q, ϕGH) = qi", where G stores s' rev(s) into s', (therefore
s' will hold the reverse of the tape value t) where s and s' are the values of the two
stacks, and H outputs Rmb(rev(s')) δ (i.e. the string obtained by erasing all the blanks
from the tape t followed by a blank). This can be achieved by adding 3 extra states r1',
..., r3' ∈ Q" for each transition of the type F(q, ϕ) = qi" and replacing this transition
with F(q, ϕ) = r1', F(r1', ϕ1) = r1', F(r1', ϕ2) = r2', F(r2', ϕ3) = r2', F(r2', ϕ4) = r2', F(r2',
ϕ5) = r3', where ϕ1∈ {(I, R-a , R a , I)| a ∈ Ω'}, ϕ2 = (I, E, I, I), ϕ3 = (I, I, R- δ , I), ϕ4
∈ {(R γ , I, R- γ , I)| γ ∈ Γ}, ϕ5 = (R δ, I, I, I).

14

From the construction above it is clear that f = α ˚ |M |˚ β. Therefore M computes f. ◊

Conversely, any simple n-stack straight move stream X-machine can be simulated by a
Turing machine. This is achieved by placing the input string, the n stacks and the out-
put string on the Turing machine tape separated by an extra symbol.

Let us denote by Fk and Fk the class of partial functions computed by k-stack straight
move stream X-machines and k-stack generalised stream X-machines respectively and

F = Fk, F = Fk

Then we have:-

Corollary 4.1.3:
Fn = {f| f is a partial recursive function} ∀ n ≥ 2.

Corollary 4.1.4:
F = {f| f is a partial recursive function}.

Therefore, the hierarchy of the sets Fn stops at 2 and F2 is the set of all one place par-
tial recursive functions. Obviously, F1 ⊂ F2, since a straight move stream X-machine
acceptor is equivalent to a push-down automaton.

From proposition 3.1.4, it is clear that a generalised stream X-machine cannot compute
an arbitrary partial recursive partial generalised stream function f since the domain of f
might not be recursive. Therefore, generally, a 2-stack straight move stream X-
machine cannot be converted into a generalised stream X-machine.
However, if the machine is a 1-stack straight move stream X-machine, the conversion
could be possible since ∀ f∈ F1, dom f is a deterministic context-free language. We
shall consider the class of periodic 1-stack straight move stream X-machines (since the
function computed in this case is necessarily a partial generalised stream function) and
we denote by F1* the restriction of F1 to the class of periodic straight move stream X-
machines.
The first question which arises is whether a periodic 1-stack straight move stream X-
machine can be simulated by a k-stack generalised stream X-machine, with k > 1.
However, the answer is negative.

Proposition 4.1.5:
Fn and F1 * are incomparable ∀ n ∈ N, n ≥ 2.
Proof:
We prove the proposition for X-machine acceptors (i.e. Γ = ∅).

Let Σ = {a, b, c} and L = {an bn cn | n ∈ N}. Since L is not a context free language, L
∉ F1 *. It can be proved easily that L ∈ F2.

Conversely, let L' = {ai1 b ai2 b ... air - 1 b air cs air - s+1| r ≥ 1, 1 ≤ s ≤ r, ij ≥ 1 for all 1 ≤
j ≤ r}. In [2] it is proven that L' ∈ F1 * and L' ∉Fn ∀ n ∈ N. ◊

Hence, the usual push and pop operations are not sufficient for our purpose and there-
fore we need a more complex basic type Φ. In a future paper, [9], we shall present two
new types of generalised stream X-machines with stacks and prove that they compute
exactly F1*. The approach is to consider Φ as a set of partial functions computed by

k 1=

∞
∪

k 1=

∞
∪

15

machines which are already well known (for example finite state machines) rather than
using simple push and pop operations. This provides us with a new way of building
hierarchies of computational models.

5. Conclusions and further work

We have defined a number of stream X-machines, generalised stream X-machines and
straight move stream X-machines with stacks and investigated their computation capa-
bilities. Further work might involve generalising some of the models presented in this
paper (for example a regular stack X-machine or a stack X-machine with markers with
a finite number of stacks) and exploring closure properties of classes of the functions
computed.

One of the motivations for pursuing this work is to examine more practical alternatives
to the Turing model for system specification. The use of stream X-machines has turned
out to be a very powerful and easily used fomalism for describing many different types
of software systems and hardware devices. Detailed specifications have been devel-
oped for several software systems, graphical user interfaces, real-time systems, robot
controller devices and parallel processing chips, [10]. All have the property that it is
possible to determine that the specifications represent computable functions and are
thus implementable. The theory of testing that we have developed in [6] builds on this
fact. Essentially it compares the formal specification, represented as a stream X-
machine with the implementation which can also be interpreted as an X-machine. The
construction of functional test sets then reduces to the construction of sets that will
determine whether two X-machines have the same behaviour. The process of con-
structing such test sets has now been fully specified and could be automated. The the-
ory developed here, together with other results, has been crucial for the development of
a fully general theory and procedure for system testing.

6. References.

[1] S. Eilenberg, (1974), Automata, languages and machines, Vol. A, Academic Press.
[2] M. A. Harrison, (1979), Introduction to Formal Language Theory, Addison Wesley.
[3] M. Holcombe, (1988), "X-machines as a Basis for System Specification", Software
Engineering Journal, 3 (2) , 69-76.
[4] M. Stannett, (1990), "X-machines and the halting problem - building a super-Tur-
ing machine ", FACS, 2, 331-341.
[5] F. Ipate, (1995), PhD Thesis, Computer Science, University of Sheffield.
[6] G. T. Laycock, (1992), "The theory and practice of specification based software
testing", Ph.D. Thesis, Department of Computer Science, University of Sheffield.
[7] F. Ipate & M. Holcombe, (1994), "Formal test set generation", submitted.
[8] S. N. Cole, (1971), "Deterministic Pushdown Store Machines and Real-Time Com-
putation", Journal of the association for computing machinery, 18 (2), 306-328.
[9] F. Ipate & M. Holcombe, (1995), "X-machines with stacks", Under preparation.
[10] M.Holcombe and coworkers, (1992-5), Various internal reports describing case
studies for X-machine specifications, Dept. of Computer Science, University of Shef-
field..

