Branch Cuts in Computer Algebra

Adam Dingle
Richard Fateman
Computer Science Division, EECS Dep’t
University of California at Berkeley

Abstract

Many standard functions, such as the logarithm and square
root functions, cannot be defined continuously on the com-
plex plane. Mistaken assumptions about the properties of
these functions lead computer algebra systems into various
conundrums. We discuss how they can manipulate such
functions in a useful fashion.

1 Introduction

Many standard functions, such as the logarithm and square
root functions, cannot be defined continuously on the com-
plex plane. When working with such functions, arbitrary
lines of discontinuity, or branch cuts, must be chosen. For
example, the conventional branch cut for the complex log-
arithm function lies along the negative real axis; so that
log(—1) = w7 but when €; is small, real, and positive, we
require log(—l — €1 z) = —7i+ €2 for some small, complex €3.

Most computer algebra systems provide little assistance
in working with expressions involving functions with com-
plex branch cuts. Worse, by their ignorance of the existence
of branch cuts, algebra systems sometimes produce incor-
rect answers. In this paper, we will show how an expres-
sion’s branch cuts may be mechanically computed, and how
an expression with branch cuts may sometimes be simplified
within each of its branches. Even when an expression can-
not be simplified, its branch cuts may yield useful geometric
insights. We will focus our discussion on functions of one
complex variable.

We will sometimes be informal about functions in this
paper, representing a function such as Az.z + 1 as the ex-
pression z+ 1. The interpretation of an expression as either
an expression or function will be contextually clear.

2 Domain of Mathematical Expressions

In the sections that follow, we will assume that there is some
set P of complex functions which we call primitive func-
tions. For the sake of discussing common branch cut shapes
such as lines and circles, we assume that P contains at least

Submitted to 1994 International Symposium on Symbolic
and Algebraic Computation, Oxford (UK), July, 1994

the addition, multiplication, and exponential functions, as
well as the complex constants (which we can consider to
be functions of zero arguments). Let P* be the closure of
P under functional composition. We assume furthermore
that the branch cuts of each primitive function are known,
and that we have an equation solving mechanism which can
sometimes invert functions in P*. Below, we will develop
a procedure which will be able to find the branch cuts for
some functions in P*. Our results are sufficiently general
that they do not for the most part depend on the exact set
of functions in P.

The procedures discussed below are suitable for imple-
mentation in a computer algebra system. Typically, a com-
puter algebra system will have a set of primitive functions
from which complex expressions may be built; these primi-
tive functions will form the set P*. In our Mathematica [10]
implementation, P contains the Power and Log functions,
which have branch cuts, as well as all Mathematica func-
tions which do not have branch cuts, including the addition
and multiplication functions and trigonometric functions. It
would not be difficult to add other primitive functions with
branch cuts to the Mathematica implementation; adding in-
verse trigonometric functions such as ArcTan to the system
would not increase its power, since such functions can be
defined in terms of Log anyway. (In fact, Power can also be
defined in terms of Log, but we found it necessary to add
Power since Mathematica sometimes simplifies expressions
containing Log to equivalent expressions containing Power.)

3 Branch Cut Representation

In this section we will develop a mathematical representation
for branch cuts; the representation will be useful for storing
branch cuts in a computer algebra system.

In later sections we will need to perform the following
operations on branch cuts:

1. Find the image of a branch cut under an algebraic
transformation.

2. Determine whether two branch cuts overlap, and where
they overlap.

3. Determine whether two branch cuts intersect, and where
they intersect.

Unless the set P of primitive functions is trivially small,
branch cuts may be arbitrary algebraic curves, and we can-
not in general expect to find their overlaps and intersec-
tions mechanically. By using algebraic knowledge to convert

branch cuts to canonical forms, we may determine the over-
lapping sections of some simple branch cuts. Similarly, by
using the equation-solving knowledge present in a computer
algebra system, we may determine the intersection points of
some simple branch cuts.

Since branch cuts may take many geometric shapes, such
as lines, circles, other conic sections, or wedges, we might
choose to represent a branch cut as the name of a known
shape, along with parameters for that particular shape. For
example, a circle might be represented by the symbol “cir-
cle” along with its center and radius. Harlan Seymour de-
scribes such a representation in his master’s thesis [9]. Sey-
mour’s library is able to derive conformal mappings that
transform one given shape into another given shape. Our
problem is more difficult: given a shape S and a mapping
M, we need to be able to recognize the shape to which S is
mapped under M. In particular, we may encounter branch
cuts which might not be representable in any fixed library
of geometric shapes; in such a situation we would like our
system to degrade gracefully, representing the unfamiliar
branch cuts in some way.

We will adopt a more general approach, representing a
branch cut as the image of a real interval under an alge-
braic transformation in P*; this will allow us to represent
branch cuts which might not be representable in a given li-
brary of geometric shapes. A branch cut will be represented
as a triple (rg, 71, f), where ro and r; are real numbers or
positive or negative infinity, and f is a function mapping
each point in the interval [ro,71] to the complex plane. For
example, we may represent the standard branch cut of the
log function as (—oo, 0, Az.z); the branch cut of log(z + 1)
is (—00,0,Az.z — 1). When we map the cut (rg,r1, f) un-
der the transformation g, we obtain the cut (ro,71,9 0 f).
Notice that branch cuts’ representations are not unique; for
example, (—00, 0, Az.z+1)is equivalent to (—oo, 1, Az.2). As
another example, (0,00, Az.2%) is equivalent to (0, 0o, Az.2).

3.1 Branch cut simplification

In this section we will define a set of simplification rules for
branch cuts. Given two simple branch cuts that overlap but
which have different algebraic representations, our simplifi-
cation rules will sometimes map the branch cuts into similar
forms, which will allow us to detect the overlap between the
branch cuts. For common shapes such as lines and arcs, we
will define canonical forms; we will design our simplification
rules so that in simple cases a shape will be mapped to its
canonical form. (Because branch cuts may have arbitrar-
ily complicated algebraic representations, we cannot hope
to map shapes to their canonical forms in general.) We will
also show how to construct branch cut simplification rules
from conformal mapping rules. Our approach is simple, and
does not properly handle algebraic features such as singu-
larities.

First, here are some general rules for simplification. If
(ro,71, f) is equivalent to (ry,ri, f'), then (ro,71,9 0 f) is
equivalent to (rg, 71, go f'); this allows us to perform simpli-
fications on subexpressions of transformations. When given
a branch cut B = (ro,r1, f) to simplify, we decompose f
into a composition of functions f = f10...0 f,. If any rules
can be used to simplify (ro,71, fn) to (v5,71, fr), we let B’
= (ry, 71, f10...0f)), and (recursively) invoke our simplifi-
cation procedure on B’. If no rules will simplify (rg, 71, fn),
we attempt to simplify each (ro,r1, fi 0...0 fn) in turn for
smaller and smaller values of #; if each of those simplification

attempts fails, we have no way of simplifying B.

To ensure that rqg < ry for every cut (ro,r1, f), we map
(ro,r1, f) to (r1,ro, f)if ro > r1. If f(x) is a continuous real
function whose minimum and maximum values within the
interval [ro,71] are mo and m1, respectively, then we may
simplify (ro,r1, Az.f(2)) to (mo, m1, Az.z); we call this sim-
plification the real function rule. For example, consider the
cuts (0,00, Ae.2®) and (0,00, Az.¢); in the previous section
we claimed that these two cuts are equivalent. Since the
minimum and maximum values of Az.z” in the real interval
[0, 00] are 0 and oo, respectively, the real function rule maps
(0,00, Az.2%) to (0,00, Az.2).

3.1.1 Lines and segments

We define the canonical form for a line segment, ray, or line
to be a cut of the form (ro,r1, Az.uz + n), where |u| = 1,
0 <argu < m and n is normal to u. It is not difficult to see
that any line segment, ray or line has a unique representation
in this form.

We may convert any cut of the form (ro,rl,)\z.wlz +
w3), where wy and wo are arbitrary complex numbers, to its
canonical form by decomposing ws into the sum wo = p+1,
where p is parallel to w1 and [is orthogonal to wi. Let u
be the complex number such that |[u| = 1, 0 < argu < 7
and w is parallel to wy; write w; = wju and p = p'u, where
w) and p’ are real. The given cut may now be rewritten
as (ro,71, Az.u(wiz + p') + 1), which may be put into its
target canonical form using the real function rule. If a line
is mapped under a linear transformation, the conversion we
have just outlined will always reduce the result to a line in
canonical form.

When a line or segment (ro,r1,Az.uz + n) is taken to
a real power, the result will be a line or segment, or a
pair of lines or segments, if n = 0; the following rules
ensure that the result will reduce to canonical form. We
map (ro,71,Az.(uz)") to (ro,r1, Az.u”"z"); w” will be of unit
length, and z" will be further reduced under the follow-
ing rules. If r is an integer, then z" is a real function, so
(ro,r1,2z") will be reduced by the real function rule. If rg > 0
and r; > 0, then (ro,71,2") may be reduced to (r§,r], z).
If o <0and r; <0, then (ro,71,2") may be reduced to
(=70, —71,(—1)"2"), and then the preceding rule will apply.
If ro <0 and r1 > 0, and r is not an integer, then we break
the cut (ro,r1,z") into the cuts (r0,0,z") and (r1,0,2"),
which will simplify using the rules already given.

3.1.2 Circles and arcs

The canonical form for a circle centered at the origin is de-
fined to be (—=, m, Az.re**). The canonical form for an arc
of a circle centered at the origin is (ro,r1, Az.re’®), where
0 <ri—ro <27 and 0 < r; < 27. Therefore, to sim-
plify (rg,r1,Az.e’®) with r1 > 7o, we first test to see if
ry —ro > 2m; if so, the cut simplifies to (—=, 7, e'?), rep-
resenting the unit circle. Otherwise, we let vy = ro mod 27
and 77 = r; mod 27. If rj > r], we correct vy by letting
7y = 1y — 2m; otherwise let 7§ = r§. Then the cut simplifies
to (rg,71,€"%).

This exponential form is convenient for expressing arcs,
but inconvenient for solving equations—both because equa-
tions involving angles generally have a multiplicity of solu-
tions and because the built-in equation solvers of systems
such as Mathematica often cannot solve such equations.

1The current Mathematica implementation, described below, at-
tempts to simplify (rg,r1, fr) only.

Accordingly, when our Mathematica implementation (dis-
cussed below) needs to solve an equation involving complex
exponentials, it converts the equation to a pair of equations
in real variables representing the real and imaginary parts
of the first equation (this occurs in the functions Intersect
and RealSolve). In this way our implementation can find,
for example, the intersection points of a line and a circle.

3.1.3 Adding rules for conformal mappings

In general, if M is a conformal map that maps a shape S
into the shape Sz, we would like M (B1) to simplify to Bs,
where B; and B> are canonical forms for the shapes S; and
S2. Kober’s dictionary of conformal mappings [6] describes
the effect that common mappings have on common shapes.
We can add algebraic information from the dictionary to our
system in the form of rules that ensure that when shapes are
mapped, they will simplify to canonical form.

For example, section 3.3 in Kober’s dictionary indicates
that the general bilinear transformation w = az + b/cz +d
maps the circle |z — zo| = r (with |z +d/c| # r) to the circle
|w — wo| = R, where

(azo + b)(cz0 + J) — aer?

|czo + d|2 — |c|?r2

Wwo =

and

r|ad — bc|

" lezo + d2 — [

We add a cut simplification rule which maps the cut

a(reiz +2z0)+b

c(ret” + z0) + d)

(=m, m, Az,

to (—W,W,)\Z.Reiz + wp). Adding several more rules will
allow the system to simplify any branch cut that involves
mapping a line or circle by bilinear transformations.

3.2 Branch cut inversion

As discussed above, we may find the inverse image of a
branch cut B under a mapping f by finding the image of
B under each inverse function of f. Typically, we can use
the equation solving facility of a computer algebra system
to invert f: we solve the equation f(z) = w for the vari-
able z. A complication that arises in practice is that f may
have an inverse function which is defined only on a por-
tion of the complex plane. For example, in the computation
of the branch cuts of /+/z — 2, we must find the inverse
image of the ray [—oo,2] under the mapping f(z) = /=
As it turns out, f7'(z) = 2 is an inverse for f when
—7/2 < arg(z) <= 7/2, but when z is in the left half-plane,
f(w) = z has no solution.

If an algebra system’s equation solver can generate in-
equalities which indicate when a solution exists for a par-
ticular equation, we can use those inequalities to remove
portions of branch cuts where an inverse function is unde-
fined. In the above example, for instance, we find that the
the inequality —7/2 < arg(z) <= /2 holds only on the
subinterval [0, 2] of [—o0, 2], so the inverse image of [—co, 2]
under /7 is the branch cut (0,2, 2%) = (0,4, z).

3.3 Checking for overlap

Once we have placed branch cuts into canonical form, we
can often tell if two branch cuts overlap: (ro,r1, f) overlaps

with (ro, 71, f) if the intervals [ro,71] and [r4,r1] overlap.
This test is necessary for combining branch cuts to eliminate
them, as discussed above, and is adequate for combining
many simple sorts of branch cuts.

4 Branch Cut Computation

In this section we discuss methods for computing the branch
cuts of a function of one complex variable. The branch cuts
are interesting in their own right, and will also lead to al-
gebraic simplifications within individual branches. In the
discussion that follows, we assume that if f is a primitive
function with branch cuts, then either f is a function of a
single complex variable, or f has branch cuts only in its first
argument (that is, f is continuous in each of its other argu-
ments). This assumption has not proved to be restrictive.
In our Mathematica implementation, the only functions in
P that have branch cuts are the Log and Power functions;
Log is a function of one variable and Power is continuous in

its second argument (since ¢¥ = ¢¥'°8(2)),

4.1 Branch cut enumeration

Here is a procedure which will find all possible branch cuts of
a function F(z) € P*. First, if F(z) is a primitive function
of x, its branch cut may be looked up in a table. In our
Mathematica implementation, the branch cut table contains
the function Log and its branch cut (—oo, 0, Az.x), and the
function Power and its identical branch cut (—oc0, 0, Az.%).

If E(z) = f(g1(2),g92(),...,gn(z)) where f is a primi-
tive function, we first (recursively) compute the branch cuts
of g1 through g, ; then the branch cuts of F are, at most, the
branch cuts of g1 through g,, along with those points which
g1 maps onto the branch cuts of f. (Recall that f may have
branch cuts only in its first argument.) In general, g1 may
be hard to invert, so it will sometimes be difficult to obtain
a constructive representation for the branch cuts of the com-
posite function F; in practice, a computer algebra system
may sometimes be able to invert g; without human inter-
vention. We will discuss the problem of branch cut inversion
in greater detail later in this paper.

4.2 Branch cut elimination

The procedure sketched above will find all possible branch
cuts for a complex function, but may return some remouv-
able branch cuts: branch cuts across which the function is
not actually discontinuous. For example, consider the func-
tion f(z) = log(z+ 1) —log(z — 1). The above procedure
will compute that the branch cut of log(z + 1) is the inter-
val [—o0, —1] and that the branch cut of log(z — 1) is the
interval [—o0, 1], and conclude that the branch cut of f(z) is
[—o00,1]. Asit turns out, f(z)is only discontinous across the
interval [—1,1]; f(z) is continuous across [—oo, —1], which
is a removable branch cut. We will modify our procedure
so that it will eliminate many removable branch cuts; our
modified procedure will return [—1,1] as the branch cut of

f(z).

4.2.1 Terminology

First we introduce some informal terminology. When we
define a primitive function that has a branch cut, we must
choose one side of the branch cut with which the value of the
function on the branch cut is to agree; this choice is arbitrary
and is made subject to certain conventions and heuristics.

For example, log(—1) is arbitrarily chosen to be =i, which is
continuous with the values of the log function immediately
above the negative real axis on the complex plane; by a dif-
ferent convention log(—1) could be chosen to be —7i, which
would agree with the values below the branch cut. We say
that the alternate function g for a function f relative to a
branch cut B isidentical to f except on the branch B, where
f and g take on values agreeing with different sides of the
branch cut. The alternate branch function for a function f
relative to a branch cut B is like the alternate function, but
is defined only on the branch cut itself. The alternate branch
function for a function f can often be defined in terms of
f itself. For example, if f(z) = log(z) — 271 and is defined
only when z on the negative real axis, then f is the alternate
branch function for log.

4.2.2 The procedure

Here is a sketch of a modified branch cut computation pro-
cedure, which will eliminate removable branch cuts. We
recursively compute, for the given expression E(z) and for
each of its subexpressions, a list of possible branch cuts and
also, for each branch cut, an alternate branch function for
the cut. If E(z) is a primitive function, we can look up
its branch cuts and alternate branch functions in a table as
before.

If E(z) = f(91(2),...,9n(z)) where f is a primitive func-
tion, then we invoke the procedure recursively on each g;,
returning a set G; of pairs (B,b) for each subfunction g;,
where B is a branch cut and b is an alternate branch func-
tion for B. Then, for each branch cut and corresponding
alternate branch function (B,b) of f we compute the set
B’ of cuts which g1 maps to B; for each cut C in B’ we
construct the pair (C,b); let F' be the set of all such pairs.

We now construct a set S of branch cuts from the cuts
in the sets G; and F' by combining branch cuts wherever
they overlap; we may need to break some of the branch cuts
into smaller pieces in order to do this. For example, if G,
contains the branch cut [—4,4], an interval on the real axis,
and G» contains the branch cut [—2, 6], then S will contain
the branch cuts [—4, —2], [-2,4] and [4, 6].

Now we construct an alternate branch function for each
branch cut B in S. Each branch cut B has an alternate
branch function f'o (h1,...,ky), where f' and the k; are
defined as follows. If B derives from a cut C that appears
in a pair (C,b) in F, then f' = b; otherwise f' = f. (We
say that a branch cut derives from each of the branch cuts
that overlapped to form it.) If B derives from a cut C' that
appears in a pair (C,b) in some Gy, then h; = b (which is
the alternate branch function of B in gi); otherwise h; = g;.

Finally, we test each branch cut B in S to see if its alter-
nate branch function is algebraically equivalent to f; if so,
B is removable. Eliminating the removable branch cuts in
S, we are left with the set of branch cuts of F.

The procedure above will necessarily fail to remove some
removable branch cuts, because it depends on being able to
tell when branch cuts overlap and when functions are alge-
braically equivalent. Nevertheless, the algorithm will com-
pute an exact set of branch cuts for many simple functions;
and, like the preceding procedure, will never miss actual
branch cuts.

4.3 An example

For example, consider the computation of the branch cuts
of the function F(z) = log(z + 1) —log(z — 1); E is recur-

sively expressed as h(g1(z),92(2)) where h is the subtrac-
tion function, g1(z) = log(z 4+ 1) and g2(z) = log(z — 1).
The procedure is recursively invoked on the function g1,
which is of the form f(g(z)) where f = log is primitive.
g = Az.z+1 has no branch cuts; f has the single branch cut
B = [—00,0] with corresponding alternate branch function
b(z) = log(z) — 2mi. Mapping the cut B under the g7', we
obtain the cut B’ = [~oco0, —1] with corresponding alternate
branch function bog =log(z+1) — 2wi. Similarly, the algo-
rithm is invoked on log(z—1), returning the cut [—oo, 1] with
alternate branch function log(z — 1) — 2mi. We determine
that the intervals [—oo, —1] and [—o0, 1] overlap, and break
them into the two intervals [—oco, —1] and [—1,1]. Since
[—o0, —1] derives from both g1 and g2, its alternate branch
function is f o (Az.log(z 4+ 1) — 274, Az.log(z — 1) — 27i) =
(log(z+1)—271)—(log(z —1)—27i) = log(z+1) —log(z—1).
Since [—1, 1] derives only from g2, its alternate branch func-
tion is f o (Az.log(z + 1), Az.log(z — 1) — 27i) = log(z +
1) —log(z — 1) + 271i. When we trim the set of branch cuts,
[—oo, —1] vanishes because its alternate branch cut is identi-
cal to the function E itself; we are left with the single branch
cut [—1,1].

5 Implementation in Mathematica

We have implemented the branch cut computation algo-
rithm in Mathematica; the code is available from the au-
thors. The Mathematica function BranchCuts is used to
find the branch cuts of a function of a single complex vari-
able. Given such a function, BranchCuts returns a list of
branch cuts, each of which has the form Cut[ro, r1, f1, rep-
resenting the range of the complex function f over the real
interval (ro,71).

The implementation can find the branch cuts of many
simple functions. For example, exercise 13a on page 24 of
Carrier, Krook, and Pearson’s complex analysis text [1] asks
the reader to find the branch cuts of the complex function

1+ \/E That function is represented in Mathematica as
Fnlz, Sqrt[1 + Sqrt[z]]], so we can pose the branch cut
problem to the BranchCuts function as follows:

In[6] := BranchCuts[Fn[z, Sqrt[1 + Sqrt[z]1]]1]
Out[6]= {Cut[-Infinity, O, Identityl}

Mathematica reports that the function has the single
branch cut (—o0,0,Az.z), which is the negative real axis.
A bit of thought reveals that this is indeed the only branch
cut, since the function 1+ +/z does not map any values z to
the branch cut of 1/z.

The corresponding exercise 13b asks for the branch cuts
of the function log 1 + /22 + 1; our implementation can solve
this problem as well:

In[7]:= BranchCuts[Fn[z, Log[1 + Sqrt[z"2 + 1]11]1]
Out[7]= {Cut[-Infinity, -1, I #1 & 1,
> Cut[1, Infinity, I #1 & 1}

The branch cuts reported are the imaginary intervals
[1,700] and [—i,—t00]. (The notation I #1 & is a Mathe-
matica shorthand for Az.iz.)

Our implementation will eliminate many removable branch
cuts, such as in this example:

In[8]:= BranchCuts[Fn[z, Logl[z + 1] - Logl[z - 111]

Out[8]= {Cut[-1, 1, Identityl}

5.1 Difficulties in implementation

Several aspects of Mathematica posed difficulties for our im-
plementation. Perhaps the most severe was the lack of sup-
port for the manipulation of inequalities: neither the built-
in facilities of Mathematica nor any of the supplied pack-
ages are able to simplify expressions involving inequalities
(for example, simplifying 4 <= x <= 8 && 5 <= x <= 10 to
§ <= x <= 8), or to find ranges of real numbers for which
a given inequality holds; these operations are necessary for
branch cut inversion. Worse, Mathematica’s equation solver
does not generate inequalities that represent when an equa-
tion has a solution. For example:

In[13]:= Solve[Sqrt[x] == a, x]

2

Out[13]= {{x -> a }}

In[14] := Reduce[Sqrt[x] == a, x]

2
Out[14]= x == a

Neither the Solve nor Reduce commands report that
their solution is valid only when a is in the right half-plane.

Other basic mathematical facilities are absent as well.
Mathematica does not seem to have a mechanism for finding
the maximum and minimum of a polynomial or other real
function within a given interval, which is useful for branch
cut simplification. The Solve program cannot find real roots
of complex functions involving the argument function; for
example, it cannot find the real root * = 2 of the simple
equation arg(z + 21) = 7 /4, which is essential for finding
the portion of a branch cut which can be inverted under a
transformation such as 1/z.

We were able to circumvent the above difficulties by im-
plementing the missing features; we feel that most features
we needed are basic enough that they should be present in
packages in the standard distribution, if not in the core lan-
guage itself.

Another difficulty we encountered was that Mathemat-
ica’s evaluation mechanism cannot always be easily modi-
fied for its built-in functions, so that it is difficult to change
Mathematica’s notion of a canonical form. For example,
the expressions Sqrt [x], x"(1/2) and Exp[1/2 Log[x]1] are
mathematically equivalent; Mathematica reduces each of
them to x~(1/2). Since exponentiation is the only built-in
function of two complex arguments that has a branch cut, we
hoped to rewrite each exponentiation operation in terms of
the exponential and logarithm functions, which would sim-
plify the branch-cut computation code. Since we could not

convince Mathematica to reduce x~(1/2) to Exp[1/2 Log[x1],

however, we had to write our branch-cut code to be able to
handle functions of more than one argument.

6 Computation of Branch Regions

The procedures presented thus far can find the branch cuts
of a given complex expression. We now turn to the problem
of finding the regions into which an expression’s branch cuts
divides the complex plane. In particular, we would like to
be able to compute the number of regions; we would also
like to compute some representation of the boundaries of
each region. Finally, we would like to be able to find a
point in each region, which will be useful later, when we
will show how the expression may sometimes be simplified
in each of its branch regions. The procedure described in

this section is complicated; an example will follow and may
be enlightening.

6.1 Eliminating intersecting branch cuts

To determine the set of regions into which a set C' of branch
cuts divides the complex plane, we find all pairs of branch
cuts that intersect. Intersection can be determined alge-
braically or perhaps numerically. If two branch cuts B, Bz
intersect at a point P, we split each B; into two cuts at P
if P is not an endpoint of B;. We now have a set S of pair-
wise non-intersecting cuts, each of which is either a closed
curve or a path between two points (either or both of which
may be at infinity). We now discard any cuts which have
a non-infinite endpoint to which no other cut is connected,
since such cuts do not separate branches of the plane.

For each endpoint e, at least two cuts have e as an end-
point; we compute the angle at which each of those cuts
leaves e. In the branch cut representation which we have
chosen, each cut is represented as the range of a function f
on a real segment (to, tl); the angle at which the cut leaves
the endpoint f(to) is arg(f'(¢0)). For each finite endpoint e,
we sort the cuts which have e as an endpoint by the angle
at which they leave e. It is possible that two or more cuts
may leave e tangentially and thus at the same angle a; in

1 1
such a case we sort those cuts by computing r; = %
for each cut ¢ and comparing the r;; r; measures the “ltvvist”
of fi at e. (In this context, (a4 bi)-(c+di) for real a, b, ¢, d
means ac + bdi; this is like the dot product of two vectors.)

We would also like to sort the segments which have end-
points at infinity around the point at infinity. To do so
we consider the image of the segments under the mapping
f(w) = 1/w; the segments may now be sorted according
to the angle at which their projections under f touch the
origin, which is the image of the point at infinity under the

mapping f.

6.2 Traversing the branch regions

Let R be a set containing an arbitrary endpoint e; (the
endpoint at infinity, if there is one, is convenient). Choose
any cut s; in S that has e; as an endpoint. Let ez be the
other endpoint of s1. Moving counterclockwise around es
from the cut s1, let s2 be the next cut that we encounter.
Let e3 be the other endpoint of s3. We proceed similarly
until we return to e;, at which point we have traversed the
perimeter of a branch region in a clockwise direction. If any
of the e; we encountered are not in R, we now add those ¢;
to R. Then we choose any endpoint e} in R, and any cut s
in S that has e] and another endpoint e} as endpoints, such
that we have not already traversed sj from ej to e}, and
repeat the process, traversing another region and possibly
adding more endpoints to R. We continue until we have
exhausted the process, namely that until we find that in our
traversals we have left every endpoint e in R from each cut
that has e as an endpoint.

In many cases a single traversal will determine the set of
regions into which the original set C' of branch cuts divide
the complex plane; the traversal process will have exhausted
the set S. In some cases, however, some branch regions
may be contained entirely within other regions, and so the
traversal will not find all regions. For example, if C' consists
of two concentric circles C7 and Cs, with ¢ containing Cb,
the first traversal will discover only one of the two circles. In
such cases, the problem of discovering which branch regions

are contained in other regions is beyond the scope of this
paper.

6.3 Choosing points in each region

To choose points that are in a region R, we select any end-
point e on the boundary of R; let s and s’ be the cuts on
the boundary of R that have e as an endpoint. We compute
the angle at which s and s’ leave e, and draw a line L which
bisects the angle formed as s and s’ leave e. We compute
all intersections of I with the boundary of R; let ¢’ be the
intersection nearest to e, moving from e in the direction of
the interior of R. Now we can choose any point on the line
segment (e, e’) as a point in R.

6.4 A simple example

We will illustrate how the above procedure computes the
branch regions of the function f(z) = In((z +i)(z — 1)) —
(In(z+41¢)+1n(z—1)). Our branch cut procedure tells us that
the branch cuts of f(z) are the lines [—o0,] (using interval
notation a bit loosely - this indicates a line from —oo to ¢
or, more precisely, the set {z +i| — oo < z < 0}), [—o0, —1],
[¢,700] and [—1, —1oc]. The first two branch cuts are the
branch cuts of log(z — i) and log(z+ 1), respectively; the last
two are obtained by mapping the negative real axis under
the inverses of (z 4+ ¢)(z — ¢). None of the branch cuts inter-
sect at points other than their endpoints; the set of branch
cut endpoints is {7, —7,00}. The branch cuts around oo are
sorted in the order [1, 100], [—00, 1], [—00, —1], [—1, —i0c0] (we
must use the second derivative to properly order [—oo, —i]
and [—o0,1]).

We now traverse the branch cuts in 5. Starting with
the point at infinity, we traverse the regions R, bordered
by [ico,i] and [i,—oc]; Ra2, bordered by [—oo,1], [i,100],
[—i00, —i], and [—¢, —oo]; and Rs, bordered by [—oo, —i] and
[—1, —100].

6.5 Implementation

We have implemented the region-finding procedure in Math-
ematica. The Mathematica function Regions maps a func-
tion to a list of its branch regions; each region is represented
by a list of its boundaries. Each boundary is represented by
a segment: a directed cut which is represented by a triple
(ro, 71, f), where the cut is the range of f over the real inter-
val [ro,71] and is directed toward the endpoint f(r1). The
canonical form for a segment is the same as the canoni-
cal form for a cut, described above in the section “Branch
cut simplification”, except that ro may be less than r; in a
canonical segment.

Our implementation can find the branch regions of the
example given in the previous section:

In[6]:= Regions[Fn[z, Logl(z + I)(z - I)] -
Loglz + I] - Loglz - 1111

Out[6]= {{Cut[-Infinity, O, I + #1 & 1],
> Cut[1, Infinity, I #1 & 1],

> Cut[-Infinity, -1, I #1 & 1,

> Cut[0, -Infinity, -I + #1 & 1},

> {Cut[-1, -Infinity, I #1 &],

> Cut[-Infinity, O, -I + #1 & 13},

> {Cut[0, -Infinity, I + #1 &],
> Cut[Infinity, 1, I #1 & 1}}

Again, I + #1 &is a Mathematica shorthand for Az.z+:.
The regions reported by Mathematica are, in order, Ra, R,
and R;.

The Mathematica implementation does not sort the end-
points at infinity; rather, it uses an earlier idea involving a
large circle enclosing all of the finite endpoints.

7 Expressing Ambiguity of Branch Choice

We now turn to the problem of simplifying functions that
have branch cuts. In general, simplifications which are sound
for real expressions will not always work for similar complex
expressions, since in the complex case the functions gener-
ally have branch cuts. For example, when «¢ and b are real
and b > 0 we have log b* = alog b, which is not always valid
on the complex plane.

7.1 zeroOf and root0f, Unln and Unbranch

The simultaneous expression of several choices in a single
symbol has been introduced in general computer algebra
systems in several ways. Macsyma [7] allows certain com-
putations to be done over algebraic number and algebraic
function fields via the command tellrat. For example
tellrat (a~2=3) specifies that a® = 3 without expressing an
opinion as to whether a is positive or negative, or in general,
real or complex. Nevertheless, expressions where only a2
occur are unambiguous. A command tellrat (y~2=x"2+1)
indicates an algebraic relationship between y and z. Such
relationships are used only within Macsyma’s rational func-
tion subsystem (rat(..)), and only then when a variable
algebraic is set to true. This i1s not applied routinely
throughout the system, and thus the system will not know
for example, that a® > 0. Furthermore, Macsyma’s built-
in commands do not routinely generate forms for algebraic
numbers for their own use or for the display of answers. If
the solution of an algebraic equation cannot be expressed
in terms of radicals, the solve program declines to solve
it. (Adopting a variation of the solutions of Mathematica
or Maple, described below, would probably be a quick but
partial fix.)

The AXIOM system [3] provides zeroOf and root0f to
specify algebraic numbers within some arbitrary choice. AX-
IOM allows a command of the form a := root0f (a**4+1,a).
The operation zeroOf is similar to root0f, but will use
radicals when possible. AXIOM differs from Macsyma in
two important respects: the system will generate such ex-
pressions in the solution of systems of algebraic equations,
and will (as a consequence of incorporating this information
more fundamentally in its “kernel” operations) provide sim-
plifications when appropriate, not just when explicitly re-
quested. Nesting of algebraic extensions is supported, and
no automatic attempt is made to reduce successive exten-
sions to a primitive element. Note that solution of algebraic
systems 1s used internally in AXIOM for other purposes, and
therefore results from (in particular) the integration pro-
gram may include root0f expressions.

The Maple system [2] uses the operator Root0f to ex-
press the solution of algebraic equations in a similar manner
to that of AXIOM. Maple allows the notation to be used
for transcendental equations as in Root0f (cos (x)=x,x), but

appears to have no routines to manipulate such transcenden-
tal forms. In a manner similar to Macsyma, Maple requires
special effort on the part of the user to specify simplifica-
tion of such quantities, requiring the user to apply evala
or simplify/Root0f to effect simplification of expressions
with Root0fs. Maple does use Root0f for its own purposes,
in a manner similar to that of AXIOM, and so new expres-
sions may be generated. A finite sum over different roots is
supported.

The Mathematica system [10] uses a convention where
Solve can provide a set of algebraic rules for simplification
(through rule application) or the user can define, with the
assistance of AlgebraicRules a sequence of substitutions in-
tended to simplify expressions. The rules must be explicitly
applied to expressions for them to take effect. It appears
that, except for Solve and Reduce, no programs produce
RuleSets, and that (for example) integrations requiring al-
gebraic expressions which are not expressible in terms of
radicals are returned unintegrated.

With the exception of the slight concession of Maple
to the need for expression of worse-than-algebraic roots,
there are no facilities for dealing with multiple-valued non-
algebraic expressions in any system, and with the possible
exception of Axiom, even handling expression with algebraic
extensions seems “tacked on”. G

In unpublished work (but described in sci.math.symbolic

Internet netnews (April 19, 1991), Charles Patton, Sam
Dooley, and others have attempted to derive minimum “add-
on” concepts that would permit computer algebra systems
to deal with multiple values.

7.2 Simplification using Integer Rounding

Kahan has noted [5] that expressions involving functions
with branch cuts can sometimes be written in a simpler form
by using the nearest-integer function. For example,

In(e®) = z — 2mi[S(2)/27]

where [a] denotes the integer nearest to a, rounding half-
integers down, and where $(z) denotes the imaginary part
of z. Although the form on the right looks more complex,
it involves no transcendental functions and may be much
easier to compute.

When an expression involves terms v and w such that
e’ = v, the expression may sometimes be simplified by
applying to each term the substitution

z =1In(e®) + 2mi[S(z)/27]

which is a simple variant of the identity above. For exam-
ple, consider the expression In(w?) — 2In(w); notice that

en(w?) — e2n(w) — 42 Then we simplify as follows:

In(w?) —2In(w) = In(e™™?) + 27 (In(w?))/27] (1)
—In(e2™"™)) — 27i[S(21n(w)) /24P)

= 27mi[S(In(w?))/27] (3)
—2mi[S(2In(w))/27] (4)

2mifarg(w?)/27] — 27i[arg(w)/x](5)

—2mifarg(w)/7] (6)

The last step can be performed in a computer algebra system

by means of a simple rule that reduces [arg(z)/2x] to 0.
We have implemented the above substitution in Mathe-

matica. The example above can be simplified automatically:

In[2]:= ExpTrans[Log[w"2] - 2 Log[w]l]

Arglw]
Out[2]= -2 I Pi Round[------]

7.3 Multiple Values

The expressions derived using the simplification of the pre-
vious section will often contain complicated instances of the
nearest-integer function, which are difficult to analyze alge-
braically. In this section, we will see that each instance of
the nearest-integer function is constant in each branch of the
simplified expression. We may then ignore the argument of
the nearest-integer function, and solve for its value in each
branch.

Notice that $(z)/27 is a half-integer exactly when e®
falls on the negative real axis, which is the branch cut of
the In function. It follows that within any particular branch
of the function In(e®), the value of [¥(z)/2x] is constant.
Hence, if we simplify an expression using the above identity,
the value of the expression in a given branch can be ob-
tained by replacing each occurrence of the greatest-integer
function with a particular integer. Thus, we introduce a
new (weaker) identity: z = In(e®) 4+ 27k for some integer
k. Simplifying an expression using this weaker identity will
vield a set of expressions which represent possible values of
the expression in each of its branches. We can derive similar
“weak” identites for functions derived from the logarithm:
for example, z = (—l)k\/z_2 = £+/%2 for some integer k, and
\/E = :I:\/E\/z for some integer k.

To determine the value of & which is appropriate for an
expression F in a given branch, we choose a point in the
branch (as previously described) and solve numerically for
k. If we are unlucky, the point we choose may not give us
a unique value for k, in which case we choose another point
and try again. If £ has the same value v in all branches,
then we may simplify £ by replacing k& with v.

7.4 An example
Consider the function f(z) = In((z + i)(z — ¢)) — (In(z +

i) + In(z — i)), used as an example in the previous section.
Notice that

eln((z-l-i)(z—i)) — eln(z-l-i)-l-ln(z—i) — (Z + Z)(Z _ Z)
so we may use the identity z = In(e”) 4+ 2wik to simplify
f(2) to 2mik for some integer k. Thus for each branch of the
function f(z) there is some integer k such that f(z) is the
constant 2wk within that branch.

In the previous section we showed how to find the branch
regions Ri, R2, and R3 of f, and showed that we can find
a point in each region. We find a point p in Ri—say, p =
—2 4 21. We have f(p) = 27wiky; then k1 = f(p)/2x¢, and

we can evaluate k1 numerically:

In[13]:= £f[z_] := Logl(z + ID(z - I)] -
(Logl[z + I] + Loglz - ID)

In[14]:

Wifl-2 + 2 11 / (2 Pi I)]

-17
Out[14]= -1. + 7.0679 10 1

We have found that &1 = —1 (since we know that k1 1s
an integer, we can discard the small error introduced by the
numerical computation), and so f(z) = —27¢ when z is in
R,. Similarly, we find that f(z) = 0 when z is in R», and
that f(z) = 2x¢ when z is in Rs.

7.5 A challenge problem

Consider a problem posed by W. Kahan in [5] as a challenge
for computer algebra systems: if R(z) = (24 1/2)/2 and
S(w) = w+w+ 1v/w — 1, simplify S(R(z)). (Notice that
S is a “weak inverse function” for R as R(S(z)) = z for all

z.) Expansion of S(R(z)) yields

S(R()) = Z2;1+W‘;)2W;)2 M

B 2241 (z+1)(z-1)
o 2z + 2z (8)

This last expression simplifies by case analysis to z or 1/z.
We may conclude that S(R(z)) is equivalent either to z or
to 1/z in each of its branches.

The procedures described in previous sections can deter-
mine (if an appropriate conformal-mapping rule is present)
that the branch cuts of the function S(R(z)) are the unit
circle and the negative real axis. These branch cuts parti-
tion the plane into two regions, inside and outside the unit
circle testing a point in each region reveals that S(R(z)) = =z
outside the circle and that S(R(z)) = 1/z inside the circle.
In this example there are no “unlucky” test points, since
z=1/z only at z =1 and z = —1, which are on the circle
itself.

We may similarly determine how S(R(z)) may be sim-
plified on each branch cut by testing a point on that cut,
but we must be careful to keep individual branch cuts sepa-
rate. Strictly speaking, the unit circle is not a single branch
cut of S(R(z)) but actually two branch cuts, namely the
lower and upper halves of the circle (respectively, the arcs
(m,27,) and (0,7, ¢*?)), each generated from a separate
inverse function of R(z). It turns out that on the lower half
of the unit circle, S(R(z)) = 1/z; on the upper half of the
circle, S(R(z)) = z.

8 Conclusion

We have described and implemented procedures which can
find the branch cuts of some simple functions, and which can
sometimes simplify algebraic expressions within individual
branch regions.

It seems a bit ad hoc to solve for the simplified expression
that is appropriate in each branch of an expression. Might
it be possible to derive the simplification algebraically for
each branch?

The Mathematica implementation is at best a working
prototype or a proof of concept: it may not work satisfacto-
rily on problems other than simple examples. In particular,
its knowledge of conformal maps could be greatly expanded,
and many of the basic tools we must use are not adequate
as given by the system. It would be nice to have an imple-
mentation of the algebraic simplification within branches.

In our implementation we do not distinguish between
closed and open intervals. More careful attention to the
endpoints of intervals would allow us to represent and ma-
nipulate singularities, which we can consider to be degener-
ate branch cuts.

A Acknowledgments

Large portions of this paper are based on Adam Dingle’s
Master’s project [4] written under the direction of Richard

Fateman, University of California at Berkeley. Prof. W. Ka-
han, the second reader for this report, also contributed help-
ful suggestions.

Adam Dingle was supported in part by a National Sci-
ence Foundation Graduate Fellowship. This research was
sponsored in part by the National Science Foundation Grant
No. CCR-9214963 and NSF Infrastructure Grant number
CDA-8722788.

References

[1] G. F. Carrier, M. Krook, and C. E. Pearson. Func-
tions of a Complex Variable: Theory and Techniques,
McGraw-Hill, 1966.

[2] B. W. Char, K. 0; Geddes, et al. Maple V Library Ref-
erence Manual, (and other volumes) Springer-Verlag,
1991.

[3] Richard D. Jenks and Robert S. Sutor. AXIOM the Sci-
entific Computation System. NAG and Springer Verlag,
NY, 1992.

[4] A. Dingle. “Branch Cuts in Computer Algebra,” Mas-
ter’s Thesis, Department of Electrical Engineering and
Computer Science, University of California at Berkeley,
1991.

[5] W. Kahan. “Instead of UNLN”, unpublished paper,
April 1991.

[6] H. Kober. Dictionary of Conformal Representations,
Dover, 1957.

[7] Macsyma Inc. Macsyma Reference Manual, Version 14,
1991.

[8] Z. Nehari. Conformal Mapping, McGraw-Hill, 1952.

[9] H. Seymour. “Conform: A Conformal Mapping Sys-
tem”, Master’s Thesis, Department of Electrical Engi-
neering and Computer Science, University of California
at Berkeley, 1985.

[10] S. Wolfram. Mathematica, A System for Doing Mathe-
matics by Computer, Second edition, Addison-Wesley,
1991.

