
Diss. ETH No. 11432

Dominik Gruntz

On Computing Limits in a

Symbolic Manipulation System

A dissertation submitted to the

Swiss Federal Institute of Technology Z�urich

for the degree of

Doctor of Technical Sciences

presented by

Dominik Wolfgang Gruntz

Dipl. Informatik-Ing. ETH

born May 26, 1964

citizen of Basel-Stadt, BS

accepted on the recommendation of

Prof. Dr. G. H. Gonnet, examiner

Prof. Dr. M. Bronstein, co-examiner

Dr. J. Shackell, co-examiner

1996

v

To Simone, Stephanie, Patrick and Benedikt

vi

Acknowledgements

I am indebted to Prof. Gaston H. Gonnet for his supervision of this thesis. I

have pro�ted substantially from his own work in the area of symbolic asymp-

totic analysis. His con�dence in the ultimate success of our algorithmwas very

encouraging. Moreover, working in his research group I became acquainted

with many experts in the �eld of symbolic computation from all over the

world.

I thank Prof. Manuel Bronstein and Dr. John Shackell for their willingness to

be co-examiners as well as for their valuable advice. The critical comments of

Prof. Bronstein helped to improve the thesis considerably. With Dr. Shackell

I could sort out the �nal problems I had with my implementation of his algo-

rithm to compute nested forms during my visit at the University of Kent at

Canterbury.

I also thank Bruno Salvy who invited me to INRIA where I could present

and discuss my work. Furthermore, my thanks go to Jacques Carette and

Dave Hare. I had many exchanges of ideas with them over e-mail on how

Maple's series facility could be improved. Particular thanks go to Mike

Monagan who initiated me into the secrets of Maple programming. I would

also like to thank all the members of theMaple development team, who have

(consciously or unconsciously) tested my code.

I am grateful to my colleagues Lukas Knecht and Wolfgang Weck for care-

fully proofreading parts of this thesis as well as for our fruitful and exciting

discussions.

Last but not least my warmest thanks go to my wife Simone for her great

encouragement and her support through all these years.

Table of Contents

Zusammenfassung : ix

Abstract : x

1 Introduction : 1

1.1 Limits of Computing Limits : 3

1.2 A Numerical View of the Limit Problem : : : : : : : : : : : : : 4

2 Computing Limits: An Overview : 9

2.1 General De�nitions : 9

2.2 Mathematical Approach : 10

2.2.1 Composition of Limits : : : : : : : : : : : : : : : : : : : 11

2.2.2 Transformations : 12

2.2.3 Power Series Expansion : : : : : : : : : : : : : : : : : : 12

2.2.4 L'Hôpital's Rule : 13

2.2.5 Squeeze Theorem : 15

2.2.6 Generalized Series Expansion : : : : : : : : : : : : : : : 16

2.2.7 Other Tricks : 17

2.3 Computational Approach : 18

2.3.1 Heuristic Approach : 19

2.3.1.1 L'Hôpital's rule may not terminate : : : : : : : 20

2.3.1.2 Two ways to apply l'Hôpital's rule : : : : : : : 21

2.3.1.3 Growth of expressions : : : : : : : : : : : : : : 21

2.3.1.4 L'Hôpital's rule may be wrong : : : : : : : : : 21

2.3.1.5 Di�culty detecting continuity : : : : : : : : : 22

2.3.2 Power Series Approach : : : : : : : : : : : : : : : : : : : 23

2.3.3 Generalized Series Approach : : : : : : : : : : : : : : : 25

3 Algorithm for Computing Limits of exp-log Functions : : : : : : : : 31

3.1 Hardy Fields : 31

3.1.1 Valuation : 32

3.1.2 Comparability Classes and Rank : : : : : : : : : : : : : 33

3.2 Zero Equivalence : 36

3.3 The MrvLimit Algorithm : 37

viii Table of Contents

3.3.1 Computing the Most Rapidly Varying Subexpressions : 39

3.3.2 Rewriting Functions in the Same Comparability Class : 43

3.3.3 Series Expansion : 48

3.3.4 Moving up in the Asymptotic Scale : : : : : : : : : : : : 50

3.4 Proof of Termination : 52

3.4.1 Global Iteration : 52

3.4.1.1 Rewriting Process : : : : : : : : : : : : : : : : 53

3.4.1.2 Series Expansion : : : : : : : : : : : : : : : : : 54

3.4.1.3 Moving Up in the Scale : : : : : : : : : : : : : 57

3.4.2 Recursive Calls : 58

3.5 A Complete Example : 60

4 Related Work : 63

4.1 Nested Forms : 63

4.1.1 Algorithm for Computing Nested Forms : : : : : : : : : 67

4.1.2 Comparison : 68

4.2 Ghost and Shadow Approach : : : : : : : : : : : : : : : : : : : 73

5 Extensions : 75

5.1 Tractable Functions : 75

5.2 Essential Singularities : 79

5.3 MrvH �elds : 85

6 Asymptotic Series : 89

6.1 The MrvAsympt Algorithm : 90

6.2 Hierarchical Series : 95

7 Implementation : 97

7.1 Series Computation : 97

7.1.1 Models to Represent General Power Series : : : : : : : : 98

7.1.1.1 Truncated Power Series : : : : : : : : : : : : : 98

7.1.1.2 In�nite Power Series : : : : : : : : : : : : : : : 99

7.1.2 Lazy Evaluated General Sparse Power Series in Maple : 100

7.1.3 Fixed Point De�nitions : : : : : : : : : : : : : : : : : : 103

7.2 Zero Recognition : 106

7.3 The Properties of ! : 111

7.4 Branch Cuts : 112

7.5 Computing with Parameters : 115

7.6 The limit Routine in the Maple Library : : : : : : : : : : : : : 116

8 Comparison : 121

9 Conclusions : 129

A Maple Code for Computing Limits of exp-log Functions : : : : : : : 131

Curriculum Vitae : 145

Zusammenfassung ix

Zusammenfassung

In dieser Dissertation stellen wir einen Algorithmus zum Berechnen von ein-

seitigen Grenzwerten vor. Das Bestimmen von Grenzwerten wird in einem

Computeralgebra-System in vielen Algorithmen ben�otigt, etwa beim Berech-

nen endlicher Integrale oder aber um qualitative Informationen �uber eine

Funktion zu erhalten.

Der Algorithmus, der vorgestellt wird, ist sehr kompakt, einfach zu verste-

hen und einfach zu implementieren. Zudem l�ost er das sogenannte Aus-

l�oschungsproblem, unter dem andere, klassische Ans�atze leiden. Der Schl�ussel

liegt darin, dass eine Funktion als ganzes betrachtet in eine Reihe entwik-

kelt wird, und zwar in jenem Teilausdruck, der alle anderen dominiert. Mit

diesem Ansatz unterscheidet sich unser Algorithmus von allen anderen auf

Reihenentwicklung basierten Algorithmen, die normalersweise einen rekur-

siven Ansatz �uber die Struktur der gegebenen Funktion verwenden. Hier

m�ussen bei allen Approximationen stets exakte Restglieder mitgef�uhrt wer-

den, damit das Problem der gegenseitigen Ausl�oschung von Termen gel�ost

werden kann, und dies kann sich beim Berechnen von Grenzwerten unan-

genehm bemerkbar machen (intermediate expression swell). Unser Ansatz

umgeht diese Probleme und eignet sich daher besonders zur Implementation

in Computeralgebra-Programmen.

Im ersten Kapitel werden �altere Ans�atze diskutiert, welche immer noch die

Basis von in aktuellen Computeralgebra-Systemen eingebauten Grenzwert-

berechnungsalgorithmen bilden. Danach pr�asentieren wir unseren Algorith-

mus detailliert anhand von exp-log Funktionen und vergleichen ihn mit an-

deren aktuellen Algorithmen und Ans�atzen zur Berechnung von Grenzwerten

von exp-log Funktionen.

In einem weiteren Kapitel zeigen wir, wie der Algorithmus f�ur weitere Funk-

tionen erweitert werden kann. Diese Erweiterungen sind so gestaltet, dass

sie einfach in heutigen Computeralgebra-Programmen implementiert werden

k�onnen. Obwohl wir dabei einen sehr pragmatischen Ansatz verfolgt haben,

hat sich herausgestellt, dass sehr viele Funktionen damit behandelt werden

k�onnen.

Des weiteren stellen wir einen Algorithmus zur Berechnung von (verallgemei-

nerten, hierarchischen) asymptotischen Reihen vor, der auf unserem Algorith-

mus zur Berechnung von Grenzwerten aufbaut. Dieser Algorithmus wird kurz

diskutiert und an Beispielen demonstriert.

In einem letzten Kapitel gehen wir schliesslich auf spezielle Probleme bei der

Implementation in einem Computeralgebra-Programm ein und stellen eine

Implementation des Algorithmus in Maple vor. Diese Implementation wird

dann anhand von Beispielen mit Grenzwertalgorithmen in anderen Computer-

algebra-Systemen verglichen.

x Abstract

Abstract

This thesis presents an algorithm for computing (one-sided) limits within a

symbolic manipulation system. Computing limits is an important facility, as

limits are used both by other functions such as the de�nite integrator and to

get directly some qualitative information about a given function.

The algorithmwe present is very compact, easy to understand and easy to im-

plement. It also overcomes the cancellation problem other algorithms su�er

from. These goals were achieved using a uniform method, namely by ex-

panding the whole function into a series in terms of its most rapidly varying

subexpression instead of a recursive bottom up expansion of the function. In

the latter approach exact error terms have to be kept with each approxima-

tion in order to resolve the cancellation problem, and this may lead to an

intermediate expression swell. Our algorithm avoids this problem and is thus

suited to be implemented in a symbolic manipulation system.

After discussing older approaches which are still prevalent in current computer

algebra systems we present our algorithm in the context of exp-log functions.

The algorithm is then compared with other approaches to compute limits of

exp-log functions.

We show then how the algorithm can be extended to larger classes of functions.

This extension has been designed in the spirit of symbolic manipulation sys-

tems, i.e., we have tried to �nd an algorithm which can easily be implemented

in today's computer algebra systems. Although a very pragmatic approach is

used for this extension, it turns out that many functions can be covered.

Furthermore we present an algorithm for computing hierarchical asymptotic

series, which is based on our limit computation algorithm. This algorithm is

discussed and results are presented.

In a �nal chapter we focus on some particular problems which appear dur-

ing an actual implementation in a symbolic manipulation system. We show

an implementation of the algorithm in Maple and compare it on a set of

examples with other implementations of limit algorithms in other symbolic

manipulation systems.

1. Introduction

This thesis explores the problem of the automatic computation of a limit

within a symbolic manipulation system or, as they are called now, a computer

algebra system. The concept of a limit limx!x0
f(x) which describes the be-

haviour of a function f(x) as x approaches some limiting value x0 is a classical

mathematical problem and is fundamental to mathematical analysis. For ex-

ample the di�erentiation rules are derived through a limiting process, and also

many other problems require the computation of limits in their solution pro-

cess. Examples are the computation of de�nite integrals or the determination

of the convergence of a series.

As a consequence, a tool to compute limits automatically is very useful in a

computer algebra system and does increase its capability for doing analyti-

cal calculus. Indeed, all current general purpose computer algebra systems

(Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, Reduce)

o�er a facility to compute limits. In particular, the limit computation facility

is used in symbolic manipulation systems to evaluate de�nite integrals [89]

and de�nite sums. It is also used in the computation process to determine

discontinuities and singularities of functions and to maximize and minimize

functions. There are other applications such as the computation of closed

form formulas for formal power series [32] and the derivation of nested forms

and nested expansions of functions (see Section 4.1).

A facility to compute limits of a function is also very useful by itself. Ham-

ming [35] said, concerning numerical computations, that \The purpose of

computing is insight, not numbers". However, in contemplation of results

from a computer algebra system exceeding one page, one may adapt Ham-

ming's statement to \The purpose of symbolic computation is understanding,

not formulas". In [86], David Stoutemyer made the point that it may be di�-

cult to interpret complicated expressions, and that one would therefore like a

symbolic computation system to be able to give qualitative information about

functions. As possible qualitative properties Stoutemyer lists among others

the determination of zeros, singularities and extrema, speci�cation of bounds,

the determination of asymptotic representations as certain variables approach

in�nity and of course the computation of limits.

2 1. Introduction

Strongly related to the computation of limits is the determination of the

asymptotic behaviour of a function through an asymptotic series or a nested

form, which both provide more information about a function than simply its

limit. Additionally, asymptotic series are a powerful tool to enhance numeri-

cal de�nite integration in a symbolic manipulation environment [26, 28] and

to perform average case analysis of algorithms [23].

Today's computer algebra systems are very powerful and can solve rather

complicated problems, such as the integration of elementary functions or the

factorization of polynomials over algebraic extension �elds or Galois �elds.

These systems however are surprisingly poor if they have to solve the appar-

ently simple problem of computing a limit. Many systems even don't have the

expertise of a freshman calculus student! Let us look at three examples.

The �rst one is passed to Reduce 3.6. The system cannot solve this problem

and returns the limit unevaluated, although the limit obviously is zero. We

will see in Section 2.3.1.1 why Reduce fails on this problem.

1: limit(x^7/exp(x), x, infinity);

7
x

limit(--------,x,infinity)
exp(x)

The value of the following limit is 1 which can be obtained easily if the �rst

exponential is expanded. Axiom 2.0 however returns failed which means that

the limit does not exist ([40, p. 249]).

(1) ->limit(exp(x+exp(-x))-exp(x), x=%plusInfinity)

(1) "failed"
Type: Union("failed",...)

In the third example we try to determine the derivative of arccos(x) with the

help of the de�nition of a derivative. Maple V Release 3 returns the following

result:

> limit((arccos(x + h) - arccos(x))/h, h=0, right);

signum

�
1

2
� � arcsin(x)� arccos(x)

�
1

Note that arccos(x) = �=2�arcsin(x) and thus the result returned byMaple

is 0 � 1 which is inde�nite. The problem is that Maple does not recognize

�=2 � arcsin(x) � arccos(x) to be zero. We will see in subsequent chapters

why the other two systems fail on the �rst two examples.

The history of automatic algorithms for computing limits goes back to the

very earliest computer algebra systems. The �rst program was presented by

Fenichel [21] in 1966. The algorithm was based on a number of heuristics to

apply the mathematician's classical \bag of tricks" for computing limits, such

as the famous l'Hôpital's rule. The approach was to program a computer to

1.1 Limits of Computing Limits 3

behave as a freshman calculus student. Similar programs have been presented

by Iturriaga [39] (1967), Wang [89] (1971), Laurent [46] (1973) and Harring-

ton [37] (1979). Some of these algorithms, or at least their ideas, are still used

in some modern computer algebra systems.

The next generation limit computation algorithms were no longer based on

heuristics. They used series expansions as the underlying concept. Zippel [95]

(1976) built his algorithm on top of Taylor series expansions and Geddes and

Gonnet [27] (1988) proposed to use a generalized series model. A slightly

extended approach was used by Salvy [71] (1991).

Dahn and G�oring [20] showed that the problem of determining the limiting be-

havior of exp-log functions is Turing reducible to the zero equivalence problem

for constants. exp-log functions are those obtained from the constant 1 and

the variable x by means of rational operations and the functions exp(:) and

log(j:j). This proof however is not a constructive one, i.e. does not induce an

algorithm to compute limits. The �rst complete limit computation algorithm

for exp-log functions has been presented by Shackell in 1990 [77]. This algo-

rithm assumes the existence of an oracle which decides whether a constant

expression is zero or not. This algorithm has been extended to meromor-

phic [82] and Liouvillian [83] functions. None of today's computer algebra

systems, however, use implementations of these algorithms.

The algorithm which is presented in this thesis has the same scope as Shack-

ell's algorithm for exp-log functions, but overcomes some di�culties as the

techniques used are di�erent. Our algorithm is tailored for the problem of

computing limits and more suitable for the implementation in a computer

algebra system, whereas Shackell's algorithm solves a more general problem,

namely the determination of a nested form of a given function. The two algo-

rithms are compared in detail in Section 4.1. An extension of the algorithm

for functions more general than exp-log functions is given in Chapter 5. This

extension again is tailored towards a concrete implementation in a computer

algebra system. Our implementation is compared with other algorithms on a

set of examples in Chapter 8.

To complete this introduction, we present two important issues related to

the computation of limits. In Section 1.1 we show that the zero-recognition

problem sets limits to the computability of limits, and in Section 1.2, the

limitations of numerical approximations of limits are discussed.

1.1 Limits of Computing Limits

The problem of computing the limit of functions belonging to certain classes

is known to be unsolvable. This follows from the undecidability results for

the problem of zero recognition [59, 15]. Richardson has shown, that for the

class R which is the closure of the rational functions in Q(�; ln 2; x) under the

4 1. Introduction

application of the sine, exponential and absolute value functions, the predicate

\E = 0" is recursively undecidable for E 2 R. Consider now the limit

lim
"!0

"

E + "

with E 2 R: (1.1)

The result is 1 if E = 0, otherwise the limit of (1.1) is 0. Since the decision

E = 0 is not recursively decidable for all E 2 R, the limit problem is also not

recursively solvable in general. This result seems to be very pessimistic at �rst

view, but it turns out that in practice the zero equivalence problem is a minor

issue as it can be \solved" using probabilistic or approximative methods, and

for the classes of functions which are most used in a computer algebra system

such as exp-log functions or Liouvillian functions it can be reduced to the

zero equivalence problem of constant expressions. In the discussion of the

algorithm we therefore postulate the existence of an oracle to decide the zero

equivalence of functions (or constants, respectively).

1.2 A Numerical View of the Limit Problem

One may think that the problem of determining the limiting behaviour of a

function is a rather simple problem, since one only needs to look at the graph

of the function to immediately know approximately what the limit is. Looking

at the graph of the function is nothing else than evaluating the function at

selected points in the neighbourhood of the limiting point. Consider the limit

lim
x!0+

1

x
ln ln ln ln 1=x�1

: (1.2)

We �rst plug in some values in the right neighbourhood of 0, as far as we can

approach 0 with Maple numerically.

> e := 1/x^(ln(ln(ln(ln(1/x))))-1);

e :=
1

x
ln(ln(ln(ln(1=x))))�1

> evalf(subs(x=0.01, e));

:0001910870078

> evalf(subs(x=0.001, e));

:00005602749469

> evalf(subs(x=0.0001, e));

:00001246466308

> evalf(subs(x=10^(-10), e));

:2176869412 10�8

1.2 A Numerical View of the Limit Problem 5

> evalf(subs(x=10^(-100), e));

:4870365788 10�47

> evalf(subs(x=10^(-1000), e));

:1569728343 10�283

> evalf(subs(x=10^(-10000), e));

:3421606009 10�1640

> evalf(subs(x=10^(-100000), e));

:1066964575 10�7835

> evalf(subs(x=10^(-1000000), e));

Error, object too large

> plot(e, x=0..0.01);

n
0 0.010.0080.0060.0040.0020

0.00018

0.00016

0.00014

0.00012

0.0001

8e-05

6e-05

4e-05

2e-05

Figure1.1. Plot of the argument of the limit (1.2) around 0

If we look at the plot in Figure 1.1, we immediately can convince ourselves,

that the conclusion drawn from the numerical values is correct: The limit (1.2)

6 1. Introduction

really seems to be 0. This method of inspecting the function in the neighbour-

hood of the limiting point may easily be formalized. Looking at the plot is

similar to extrapolating the limiting value from a number of approximations.

Provided that the sequence of approximations tends to a limit, we can try

to accelerate the convergence by well known sequence transformation tech-

niques. Maple o�ers this technique in its evalf(Limit()) construct and uses

Levin's u-transform [47] to estimate the limit. Mathematica contains the

package NLimit.mwhich uses either Wynn's epsilon algorithm [11] or Euler's

transformation1.

> evalf(evalf(Limit(e, x=0, right), 40));

:0002093055787� :4930030240 10�50
I

Our observation appears justi�ed, although the complex part appearing in

that result may be surprising. The reason for this is, that for some arguments

x, the nested logarithms become negative and complex. In Mathematica

the starting point of the sequence can be speci�ed with the Scale option.

With a suitable starting point we get the result we expected.

In[1]:= <<NumericalMath/NLimit.m

In[2]:= NLimit[1/x^(Log[Log[Log[Log[1/x]]]]-1), x -> 0,

Scale -> 1/100, Terms -> 20]
-12

Out[2]= 1.40806 10

Why do we need a tool for the exact computation of limits at all? Computing

limits seems to be an easy task and algorithms based on numerical approxi-

mations seem to have potential! However, the remaining problem is that the

above limit is not 0, it is in�nity!

> limit(e, x=0, right);

1

Whenever the in�nite is evaluated using �nite samplings, it is possible that

the results returned are incorrect, and that is exactly what is happening in

this example. The iterated logarithms suppress the e�ect of 1=x so much, that

for x not too small, the expression is similar to 1=x"�1 = x
1�" whose limit is

zero as x goes to zero. As soon as " becomes greater than 1, the expression

starts growing towards 1. This happens for x < e
�eee � 0:429 � 10�1656520

and thus one needs a very high resolution printer and eyes like a hawk to

determine the limit by simply looking at the plot.

Another problem with the numerical approach is that it may not be possible

to evaluate the function numerically due to overow, and for the domain in

which it can be evaluated, the function may be badly conditioned and the

1For a good introductionto convergenceaccelerationof sequenceswe refer to the overview
article [93].

1.2 A Numerical View of the Limit Problem 7

oating point approximations may su�er from numerical cancellations. For

example, consider

lim
x!1

�
erf(x� e

�ex) � erf(x)
�
e
e
x

e
x
2

;

whose limit is �2=p�. However, this function cannot be evaluated for x > 22

using Maple due to limits for the size of the exponent of a oating point

number2, and for x = 22 a precision of over 109 digits is necessary to

overcome the round o� errors, which exceeds the maximal possible oating

point accuracy in Maple. For x > x0 the oating point approximation of

erf(x�e�ex)�erf (x) is always zero if x0 is the root of e
x+ln x�d ln 10 where

d is the accuracy of the underlying oating point arithmetic, i.e., d =Digits

in Maple.

2The break point is di�erent on non 32-bit machines, as the exponent of a oating point
number is restricted to one machine word.

8

2. Computing Limits: An Overview

In this chapter we recall the basic de�nitions concerning limits which can be

found in every introductory calculus text (e.g. [7]) and we show how math-

ematician's compute limits. We think that the latter is important in order

to compare the mathematician's approach with the computational one. The

limits we compute by hand in this section will later also serve as test exam-

ples for several limit computation algorithms. In the last part of this section

we look at some algorithms for computing limits which try to implement this

mathematician's \bag of tricks" and highlight the problems they encounter.

This will lead us to the motivation for our algorithm.

2.1 General De�nitions

Limits are particularly important for the description of the behaviour of a

function f(x) at the border of its domain (e.g., at in�nity), as well as at

isolated singularities (e.g., sin(x)=x at x = 0). We assume that there exist

points in the domain of f in every neighbourhood of the limiting point x0. The

question of the behaviour of f(x) when \x tends to x0" leads to the question:

How would one have to de�ne f(x0) such that f(x) becomes continuous at

x = x0? This leads to the following de�nition for the limit of a function.

De�nition 2.1 (Limit of a function, [13, Section 2.1.4]) If x tends to

x0 (x! x0), the function y = f(x) has the limit a,

lim
x!x0

f(x) = a;

if there exist points x 2 dom(f); x 6= x0 in every neighbourhood of x0, and

if for every arbitrary small " > 0 a number �(") > 0 exists, such that for all

x 2 dom(f) with 0 < jx� x0j < �(") the inequality jf(x) � aj < " holds.

This "-� de�nition goes back to Weierstrass. Note that the de�nition does not

require that the function f is de�ned at x = x0. Moreover, in the case that f

10 2. Computing Limits: An Overview

is de�ned at x0, the limit is not required to be f(x0). Only if f is continuous

at x0 2 dom(f), then lim
x!x0

f(x) = f(x0) which follows from the de�nition.

If the function f(x) is real valued and grows above every limit as x approaches

x0, we say that the function tends to in�nity. More precisely:

De�nition 2.2 If x tends to x0, the (real valued) function y = f(x) has the

non-real limit +1,

lim
x!x0

f(x) = +1;

if for every arbitrary large C a number �(C) > 0 exists, such that for all

x 2 dom(f) with 0 < jx�x0j < �(") the inequality f(x) > C holds. Similarly,

a function f(x) has the non-real limit �1 if limx!x0
�f(x) = +1.

In other words, the graph of the function f(x) has to be above the level of C

for every arbitrary large C, as soon as x is close enough to x0.

Similar de�nitions can be given if x tends to an non-real boundary point,

e.g., to real in�nity. The number �(") is then replaced by D(") such that the

inequalities jf(x) � aj < " or f(x) > C respectively hold for all x > D(").

Furthermore, if for the limiting process only function values f(x) for x > x0 2
IR should be considered, then we write x! x

+
0 and call

lim
x!x

+
0

f(x) =: f(x+0)

the right-hand limit of f(x) at x = x0. The left-hand limit f(x�0) is de�ned
similarly. If the left-hand limit and the right-hand limit at x = x0 agree,

then this is called the real (bidirectional) limit of f(x) at x = x0. If on the

other hand both the right-hand and the left-hand limit exist at x = x0 but

are di�erent, then f has a discontinuity at x = x0 and the bidirectional limit

does not exist. The equation f(x+0) = f(x�0) = f(x0) holds if and only if f is

continuous at x0.

These de�nitions can all be extended in the obvious way to function de�ned

on IRn, where, now, absolute values are replaced by Euclidean norms.

2.2 Mathematical Approach

Fortunately, for the computation of limits the general De�nition 2.1 is used

very rarely. Mathematicians use a set of standard limits and a collection of

theorems such as l'Hôpital's rule to derive the result. In the following we give

an overview over the most important techniques for computing limits.

In most calculus books the description of these techniques is distributed over

several chapters, since the preconditions for their proofs are usually presented

2.2 Mathematical Approach 11

�rst. A rather complete presentation (although on a basic freshman level) can

be found in [58].

2.2.1 Composition of Limits

The basic approach to compute limits is to reduce them to simpler ones,

eventually to so called standard limits whose results are known. The reduction

is done recursively, i.e., the arguments of a function are replaced by their limits.

The following two lemmas state the conditions under which this basic rule is

applicable.

Lemma 2.3 (Composition of Limits) If the limits

lim
x!x0

f(x) =: y0 and lim
y!y0

g(y) =: z0

exist, and if either g is continuous at y0 or f does not take on its limiting

value y0, then

lim
x!x0

g(f(x)) = lim
y!y0

g(y) = z0:

Since a rational function is always continuous on its domain, the following

lemma can be deduced from the last one.

Lemma 2.4 (Algebra of Limits) Let R(f1(x); : : : ; fn(x)) be a rational

function in the fi and let for each i the limit

lim
x!x0

fi(x) =: yi; 1 � i � n

exist, and let R(y1; : : : ; yn) be de�ned. Then

lim
x!x0

R(f1(x); : : : ; fn(x)) = R(y1; : : : ; yn):

This lemma tells us that every subexpression of a rational function may be

replaced by its limit, if the resulting expression is de�ned. This de�nes an

algebra of limits which may be used to compute limits: The limit of a sum or

a product is the sum or product of the limits of the terms, and the limit of a

quotient is the quotient of the limits of the numerator and the denominator.

Note that this lemmamay be generalized to arbitrary continuous functions R.

However, if R(y1; : : : ; yn) is not de�ned, i.e., if it is an inde�nite form such as

1�1, 1=0 or 0=0, then other rules must be applied. The rest of this section

is dedicated to this situation.

12 2. Computing Limits: An Overview

2.2.2 Transformations

If the limits yi of all the arguments of the function R exist but R(y1; : : : ; yn)

itself is of inde�nite form, then one might try to transform R into another

form ~
R so that ~

R(y1; : : : ; ym) is not inde�nite. Possible transformations are

the normalization of a rational function into factored normal form, application

of the expansion rules for the exponential, logarithm and trigonometric func-

tions, or the inverse operations of these transformations. However, there is no

strategy to choose those transformations which will succeed. Mathematical

intuition is recommended for a successful application of this method.

Example 2.5 Consider lim
x!+1

p
ln(x+ 1)�

p
lnx. The limits of both terms

of this sum are in�nity and using the algebra of limits the form 1� 1 is

obtained which is inde�nite. By the following sequence of transformations we

obtain a quotient whose form is 0=1 after replacing the numerator and the

denominator by their limits. Thus the limit is 0.

lim
x!+1

p
ln(x+ 1)�

p
lnx = lim

x!+1
ln(x+ 1)� lnxp
ln(x+ 1) +

p
lnx

= lim
x!+1

ln(1 + 1=x)p
ln(x+ 1) +

p
lnx

= 0:

{

Other examples requiring clever transformations will suggest themselves to

the reader.

2.2.3 Power Series Expansion

If R is a rational function, and if the transformation into factored normal form

still leads to the inde�nite form 0
0
or 1

1 then an expansion of R into a power

series may cancel the zeros or the poles respectively and an inspection of the

leading term may reveal the limit.

Example 2.6 For the limit limx!0
(1+x)s�1

x
the algebra of limits leads to the

inde�nite form 0=0, but if we expand the numerator in a power series and

divide it through by x, then the result becomes obvious.

lim
x!0

(1 + x)s � 1

x

= lim
x!0

1 + s x+ O(x2) � 1

x

= lim
x!0

s+ O(x) = s:

{

2.2 Mathematical Approach 13

Example 2.7 Another nice example is limx!1(
n
p
x � 1)=(m

p
x � 1). Direct

substitution leads to the inde�nite form 0=0, but power series expansion suc-

ceeds.

lim
x!1

n
p
x� 1

m
p
x� 1

= lim
"!0

n
p
1 + " � 1

m
p
1 + "� 1

= lim
"!0

1
n
"+ O("2)

1
m
" +O("2)

= lim
"!0

1
n
+ O(")

1
m
+O(")

=
m

n

:

{

Obviously, the power series approach may also be applied to other functions.

2.2.4 L'Hôpital's Rule

L'Hôpital's rule is the most famous rule to resolve inde�nite forms. It was

discovered by Johann Bernoulli in 16941. It may be applied to limits which

lead to an inde�nite expression of the form 0=0 or 1=1 when applying the

algebra of limits.

Lemma 2.8 (Bernoulli-de l'Hôpital) Let f and g be two di�erentiable,

real valued functions on]a; x0[and let

lim
x!x0

�
f(x) = 0 and lim

x!x0
�
g(x) = 0 or

lim
x!x0

�
f(x) =1 and lim

x!x0
�
g(x) =1;

and g0(x) 6= 0 for all x in some interval]b; x0[. Then we have

lim
x!x0

�

f(x)

g(x)
= lim
x!x0

�

f
0(x)

g
0(x)

provided that the limit on the right hand side exists.

The proof of this lemma is a nice application of the mean value theorem. Note

that if limx!x0 f
0(x)=g0(x) does not exist, we are not entitled to draw any

conclusion about limx!x0 f(x)=g(x). Consider limx!1
x�sin x
x+sin x

. The limit of

both the numerator and the denominator is1 and they are both di�erentiable.

If we want to apply l'Hôpital's rule we must �rst determine the value of

1G.F.A. de l'Hôpital (1661-1704) was a French Marquis who was taught in 1692 in the
Calculus of Leibniz by Johann Bernoulli (1667-1748), a member of the famous Bernoulli
family. They made a contract which obliged Bernoulli to leave his mathematical inventions

to de l'Hôpital in exchange for a regular compensation. That is the reason why one of
the very important results of Bernoulli (made in the year 1694) was named according to

de l'Hôpital, who published the result �rst in a book in 1696. After the death of de l'Hôpital,
Bernoulli complained about de l'Hôpital's \plagiarism". These facts have been resolved by
historians based on the exchange of letters between the two [84].

14 2. Computing Limits: An Overview

limx!1
1�cosx
1+cosx

, but this one does not exist, as the denominator has arbitrary

large zeros at which the function is not de�ned. However, the original limit

limx!1
x�sin x
x+sin x

exists nevertheless and its value is 1.

Example 2.9 Using l'Hôpital's rule we can show that the exponential function

grows faster than every integral power. Let n 2 IN. Then we get

lim
x!1

x
n

e
x
= lim
x!1

nx
n�1

e
x

= : : : = lim
x!1

n!x

e
x

= lim
x!1

n!

e
x
= 0

after n applications of l'Hôpital's rule. {

Unfortunately, not every inde�nite form 0=0 (or 1=1) can be resolved with

this rule. It may happen, that limx!x0 f
0(x)=g0(x) always leads to the same

inde�nite form. The simplest example for this is limx!1 e
x
=e
x.

A more complicated example is the limit

lim
x!0

x

R

where R =

qp
x
4 + 2x2(r2 + 1) + (r2 � 1)2 + x

2 + r
2 � 1

and r2 < 1 (taken from [5]). When l'Hôpital's rule is applied, then the follow-

ing equality is obtained:

lim
x!0

x

R

= lim
x!0

1

@R=@x

= lim
x!0

R

x

1

1 + x2+r2+1p
x4+2x2(r2+1)+(r2�1)2

=
1� r

2

2
lim
x!0

R

x

:

A further application of l'Hôpital's rule would bring us back to the original

function, and a blind application of l'Hôpital's rule would lead to an in�nite

loop!

Note, that if the limit exists, then the above equation contains the result (up

to the sign), namely

lim
x!0

x

R

= �
r

1� r
2

2
:

A numerical test shows that the limit is positive if 0 is approached from right

and negative otherwise.

With the help of l'Hôpital's rule also other inde�nite forms such as 0 � 1,

1�1, 11,10 or 00 may also be resolved. They only have to be transformed

into a function which has the inde�nite form 0=0 or1=1 at the critical point.

If limx!x0 f(x) = 0 and limx!x0 g(x) = 1 then f(x) g(x) has the inde�nite

form 0 � 1 at x0 and l'Hôpital's rule may be applied either to f(x)=(1=g(x))

or to (1=f(x))=g(x). If both limx!x0 f(x) = 1 and limx!x0 g(x) = 1 then

f(x) � g(x) has the inde�nite form1�1 which may be resolved using the

transformation

2.2 Mathematical Approach 15

f(x) � g(x) =)
1

g(x)
� 1

f(x)

1
f(x) g(x)

which leads to the inde�nite form 0=0 at x0.

Example 2.10 If we apply this rule in the following example with f(x) = x

x�1

and g(x) = 1
ln x

for x! 1, the inde�nite form1�1 is transformed to 0=0:

lim
x!1

�
x

x� 1
� 1

lnx

�
= lim

x!1

lnx� x�1
x

x�1
x

lnx
= lim
x!1

x lnx� x+ 1

x lnx� lnx
=

0

0
:

Two applications of l'Hôpital's rule lead to

lim
x!1

x lnx� x+ 1

x lnx� lnx
= lim
x!1

lnx

lnx+ 1� 1
x

= lim
x!1

1
x

1
x
+ 1

x2

=
1

2
:

{

The inde�nite forms 11, 10 or 00 may appear if the operands of a power

are replaced by their limits. These inde�nite forms can also be resolved with

l'Hôpital's rule, if the power f(x)g(x) is converted into the exponential form

exp(g(x) ln f(x)). Then the inde�nite form of the argument of the exponential

becomes 0 � 1 which can be resolved using l'Hôpital's rule.

Example 2.11 As an example we compute lim
x!0+

x
x. The function xx can be

written as ex ln x, and for the limit of the argument of the exponential we get

lim
x!0+

x lnx = lim
x!0+

lnx
1
x

= lim
x!0+

1
x

� 1
x2

= lim
x!0+

�x = 0

and hence lim
x!0+

x
x = 1 according to Lemma 2.3. {

2.2.5 Squeeze Theorem

The following lemma also has classical applications. Some mathematicians

call the method based on this lemma limit computation using inequalities.

Lemma 2.12 (Squeeze Theorem) If for the three functions f(x); g(x) and

h(x) the inequality f(x) � g(x) � h(x) holds in a neighbourhood of x0 and if

limx!x0 f(x) = limx!x0 h(x) = a, then

lim
x!x0

g(x) = a:

16 2. Computing Limits: An Overview

Example 2.13 A very classical application of this theorem is the proof that

lim
x!0

sinx

x

= 1: (2.1)

It is easy to conclude from a picture that sin x cosx
2

� x

2
� sin x

2 cosx
. Starting with

this inequality we can bound the function sin x
x

between the two functions cos x

and 1
cosx

whose limits are both 1.

The limit (2.1) could also be computed using the power series approach or

using l'Hôpital's rule, provided that the derivative of sin(x) is known. This

derivative can be obtained independently of the limit (2.1) if Euler's formula

for the trigonometric functions sin(x) is used and if the derivative of the

exponential function is known. {

2.2.6 Generalized Series Expansion

This approach is a generalization of the algebra of limits in the sense that the

arguments of a function are not replaced by their limits but by asymptotically

equivalent approximations. It is also a generalization of the power series ap-

proach since a more general type of series is used, not necessarily a series in

x, but also in other functions such as e�1=x. The problem is usually to choose

the right scale of expansion.

Example 2.14 As an example of this technique we compute the limit

lim
x!+1

exp(exp(((x))))

x

(2.2)

where (x) is the digamma function, de�ned to be � 0(x)=� (x). In any math-

ematical handbook we can �nd the asymptotic expansion for (x) (e.g. [3,

(6.3.18)]) to be

 (x) = lnx� 1

2x
+ O

�
1

x
2

�
(2.3)

and we see that the limit of (x) itself is1. Next we can compute the asymp-

totic approximations for exp((x)) and exp(exp((x))) by simple transforma-

tions.

exp((x)) = x e
� 1

2x e
O(1

x2
) = x� 1

2
+O

�
1

x

�

exp(exp((x))) = e
x
e
� 1

2 e
O(1=x) = e

x
e
� 1

2 (1 +O

�
1

x

�
):

Finally, we replace x by the asymptotic form for (x) in the last approxima-

tion. Note that the asymptotic form of exp((x)) has already been derived

above.

2.2 Mathematical Approach 17

exp(exp(((x)))) = (x� 1

2
+O

�
1

x

�
) e�

1
2 (1 + O

�
1

 (x)

�
)

and for the �nal result we get

exp(exp(((x))))=x = e
� 1

2 +O

�
1

lnx

�

and the result of (2.2) is e�
1
2 . {

Our algorithm (and others) also follows the idea of generalized series expan-

sions, but the automatic execution of this approach has its own problems (cf.

Section 2.3.3). In Example 5.6 we will see how this particular problem is

solved with our algorithm.

2.2.7 Other Tricks

In this part we �nally describe some techniques which are di�cult to classify.

The basic idea is to transform the limit problem (or parts thereof) into a

special form which is amenable to an application of the mean value theorem

or which de�nes the derivative of a function at the limit point. If for example

a function f(x) is di�erentiable in x0, then we know that

lim
x!x0

f(x) � f(x0)

x� x0

= f
0(x0)

and it may happen that this pattern appears in the expression whose limit is

to be computed, or that it may be transformed into this form.

Mathematicians use quite a variety of rules and tricks which depend on in-

tuition and experience, and it does not seem to be obvious that the task of

computing limits can be implemented in a general algorithm. Laurent [46]

stated, in his article concerning the problem of determining the transforma-

tions which lead to a form on which general techniques succeed, that \the

problems of this kind are so various, that we might think there is no algo-

rithm or general method at this level. At this point only his air and his

experience will guide the mathematician." Nonetheless, incorporating the

mathematician's classical \bag of tricks" into a computational method for

computer algebra systems has been studied. We look at these methods in the

next section, and will also illustrate the problems these approaches have.

To support Laurent's statement we close this section with an advanced limit

example. This example grew out of the tests we generated for our algorithm,

and it turned out that it was easier to solve this problem using the techniques

of our algorithm than using a classical approach.

18 2. Computing Limits: An Overview

Example 2.15 Consider the limit limx!1 e4(x�1=ex)=e4(x) where en is the

n times iterated exponential function. Let us �rst set up the following two

inequalities:
(a) e

�c
< 1� c

2
if 0 < c < 1

(b) e
�c

<
1
c

if c > 0

Using the above two relations, we can de�ne the following ones:

e1(x� e
�x) = e

x
e
�e�x (a)

< e
x(1� e

�x
=2) = e

x � 1=2

e2(x� e
�x) < exp(ex � 1=2) = e2(x)e

�1=2
(a)

< e2(x)(1� 1=4)

e3(x� e
�x) < exp(e2(x)� e2(x)=4) = e3(x) exp(�e2(x)=4)

(b)

< e3(x)4=e2(x) < e3(x)=2

e4(x� e
�x) < exp(e3(x)� e3(x)=2) = e4(x) exp(�e3(x)=2)

(b)

< e4(x)2=e3(x)

and consequently we get the �nal inequality

0 <
e4(x� 1=ex)

e4(x)
<

2

e3(x)

and hence the above limit tends to 0.

{

2.3 Computational Approach

There has been an interesting evolution concerning limit computation pro-

grams over the last twenty years. The �rst algorithms pioneered by Paul

Wang [90] use heuristic methods and try to simulate the techniques we have

described in the last section. The next generation systems were based only

on series expansions, namely power series as in [95] and generalized series

expansion as in [27, 71]. The latter approaches su�er from the problem of

cancellation, which we will describe in the last section of this chapter. The

algorithms proposed by John Shackell [77, 80] and our approach overcome this

�nal di�culty.

It is surprising, though, that many commercially available computer algebra

systems still use limit computation algorithms which are based on the heuris-

tic ideas of the very early approaches. To demonstrate the di�culties and

problems of these algorithms we thus can still use some of today's computer

algebra systems as a reference.

2.3 Computational Approach 19

2.3.1 Heuristic Approach

Fenichel [21] has studied automating the computation of limits and provided

some basic routines for computing two sided limits in the FAMOUS2 sys-

tem. The class of problems solved by his program is restricted to piecewise

analytical functions. Inde�nite forms are resolved only by using l'Hôpital's

rule. The algorithm was speci�ed through a collection of rules. It seems that

Fenichel got discouraged in his e�ort to study the mechanization of limits by

the undecidability results of Richardson [59, 60], which prove that there is

no decision procedure for some classes of limit problems (see Section 1.1). It

turns out however that this result is not a reason to throw in the towel as

heuristic methods exist which \solve" the zero equivalence problem reason-

ably well in practice. We think that it is very challenging to implement an

algorithm whose only restriction is the undecidability result of Richardson as

all current implementations of limit algorithms have still other de�ciencies.

Iturriaga [39] worked on one sided limits in his thesis. In addition to l'Hôpi-

tal's rule for resolving inde�nite quotients, he uses some asymptotic analysis

to resolve inde�nite forms of quotients of polynomials. Essentially he replaces

those polynomials by their leading terms, a technique which is easy to outfox.

This program was written in Formula Algol.

Wang [89] provided in his thesis a limit computation facility called DELIM-

ITER3, which he needed for the evaluation of some de�nite integrals. DE-

LIMITER is also a heuristic program written for computing limits of real or

complex analytic functions, which uses several approaches. For the special

case of rational functions a fast special routine is provided. Composition of

limits is used for limits of continuous functions. Complicated expressions are

reduced by replacing them with asymptotically equivalent and simpler ones.

Other techniques which are used are l'Hôpital's rule and heuristics for the

comparison of orders of in�nity. L'Hôpital's rule is only applied if the func-

tion does not contain exponential functions whose arguments tend to �1. In

some cases, power series are also used to obtain the limit. This algorithm is

the basis of the current limit implementation in the Macsyma system.

The main emphasis of the DALI4 program written by Laurent [46] is on trans-

formations (cf. Section 2.2.2) in the case that the function has an inde�nite

form at the limit point. The methods which are applied after the transforma-

tions are truncated Taylor series expansions (with rational coe�cients) and

simple comparisons of orders of in�nity. The latter only distinguishes between

the three classes: powers, exponentials of a power and logarithms of a power.

Harrington [37] implemented a symbolic limit evaluation program in Mode-

Reduce [38]. Besides l'Hôpital's rule to resolve inde�nite forms, he uses the

2Fenichel's Algebraic Manipulator for On-line USe
3DE�nite LIMIT EvaluatoR
4D�etermination Automatique des LImites

20 2. Computing Limits: An Overview

power series approach and a comparison of orders of in�nity. The comparison

of orders of in�nity is not as complete as in Wang's algorithm, but improved

over the DALI approach. The functions are identi�ed and ordered according

to the scale

ln lnx � lnx � 1

x
n
� e

1=x

where x ! 0. Additionally, special transformations and simpli�cations are

performed before a particular method is applied.

All these algorithms are based on heuristics and consequently fail on those

examples where the heuristic does not succeed. Furthermore, l'Hôpital's rule,

which is used by all these programs, has its own di�culties. Finally, some

rules borrowed from mathematicians are applied without testing (or without

having the ability to test) whether the preconditions are met on which these

rules are valid. These problems are discussed next.

2.3.1.1 L'Hôpital's rule may not terminate

One problem with l'Hôpital's rule is, that for some functions it may not ter-

minate. The simplest example is probably limx!+1 e
x
=e
x ([21, p. 52]), and

another one is limx!+1(e+1)x
2

=e
x ([90, p. 462]). Since one cannot decide for

a given function whether the application of l'Hôpital's rule will eventually suc-

ceed, a heuristic is needed to decide when to stop using the rule. InMacsyma

the number of applications is controlled through the variable LHOSPITALLIM

which is set to four by default. Harrington only performs three applications

in his implementation, but then he asks the user whether to continue or not.

Mathematica and Reduce apply l'Hôpital's rule a �xed number of times

which cannot be changed by the user. The limit limx!+1 x
n
=e
x = 0 may

be used as a black box test to �gure out whether a given algorithm is based

on l'Hôpital's rule and how often it is applied at most. In Reduce 3.6 and

Mathematica 2.2 this bound is three.

1: limit(x^3/exp(x), x, infinity);

0

2: limit(x^4/exp(x), x, infinity);

4
x

limit(--------,x,infinity)
exp(x)

In[1]:= Limit[x^3/Exp[x], x -> Infinity]

Out[1]= 0

In[2]:= Limit[x^4/Exp[x], x -> Infinity]

4
x

Out[2]= Limit[--, x -> Infinity]
x
E

All these heuristics are unsatisfactory because they may stop the computation

when further applications of l'Hôpital's rule would succeed. It is also does not

2.3 Computational Approach 21

help to leave this bound under user control, because the limit may be part of a

larger computation, and the user may not realize that the whole computation

failed due to a unresolved limit.

2.3.1.2 Two ways to apply l'Hôpital's rule

Another problem with l'Hôpital's rule is that there are two ways it may be

applied, corresponding to the two cases in Lemma 2.8. If f(x) and g(x) tend

both to 0 (or both to 1), then we can apply l'Hôpital's rule either to the

quotient f(x)=g(x) or to f(x)�1
=g(x)�1. This distinction is in particular im-

portant if f(x) tends to 0 and g(x) to 1, since then l'Hôpital's rule may be

applied either to f(x)=g(x)�1 or to f(x)�1
=g(x). Pursuing all possibilities

in breadth �rst search manner would lead to an exponential growth of the

run time and hence a heuristic is needed to decide which branch should be

executed. Note that with wrong branch decision the algorithm may not ter-

minate. Consider the following example where we use the heuristic to take

the version of l'Hôpital's rule where both the numerator and the denominator

of the quotient tend to zero.

lim
x!0

ln(x)x = lim
x!0

x

ln�1(x)
) lim

x!0

x

� ln�2(x)
) lim

x!0

x

2 ln�3(x)
) � � �

In this example, another choice of the branches would succeed, as we have

seen in Example 2.11.

2.3.1.3 Growth of expressions

Computing the derivatives when applying l'Hôpital's rule on an expression

may increase the size of the problem. It has been shown in [16] that there exist

expressions whose representation (in a certain measure) requires O(n) space,

but whose k'th order derivative requires O
�
n

�
n+k�2
k�1

��
space. If l'Hôpital's

rule is applied too often the expressions become intractable, and this is another

reason to bound the number of applications of l'Hôpital's rule. The heuristic

of Wang is to stop the process if the size of the function grows for three

consecutive applications of l'Hôpital's rule.

2.3.1.4 L'Hôpital's rule may be wrong

Another problem is that l'Hôpital's rule may be wrong [8] if it is not applied

properly. The particular problem in the context of a computer algebra system

is that it may be di�cult to discover that limf
0(x)=g0(x) does not exist. Let

us consider the following problem [85]:

lim
x!+1

1
2
sin 2x+ x

e
sin x (cos x sinx+ x)

:

Both the numerator and the denominator tend to +1 as x! +1, and both

are di�erentiable. Hence l'Hôpital's rule may be applied. We will use Maple

22 2. Computing Limits: An Overview

to perform the necessary steps. Since f 0(x) and g0(x) contain trigonometric

functions, the quotient f 0(x)=g0(x) is simpli�ed before it is passed to limit.

> f := sin(2*x)/2+x:

> g := exp(sin(x))*(cos(x)*sin(x)+x):

> limit(f, x=infinity), limit(g, x=infinity);

1;1
> e := diff(f,x)/diff(g,x):

> simplify(normal(e, expanded));

2
cos(x)e� sin x

2 cos(x) + cos(x) sin(x) + x

> limit(",x=infinity);

0

Since the latter limit exists and is zero, limx!+1 f(x)=g(x) is also zero ac-

cording to Lemma 2.8. However, this is not true, since f(x)=g(x) = e
� sin x

and its limit is inde�nite and bounded between 1=e and e. Maple obtains

this result as it does not use l'Hôpital's rule to compute limits.

> limit(f/g, x=infinity);

e
�1

:: e

What went wrong in the above derivation? The problem is, that in fact

limx!+1 f
0(x)=g0(x) does not exist, since g0(x) has zeros in every neighbour-

hood of +1, and hence we were not entitled to apply l'Hôpital's rule. The

simpli�cation step however normalized the fraction and removed the term

cos x from both the numerator and the denominator. The new denominator

is bounded away from 0 and tends to +1, hence the limit of the normal-

ized quotient exists and is zero. This (automatic or optional) cancellation

of removable singularities is a di�cult problem in today's computer algebra

systems [87]. It usually leads to more concise results, but, as we have just

seen, may also be the source of errors. It is not easy to handle this type of

problems correctly in general [18].

2.3.1.5 Di�culty detecting continuity

All the heuristic algorithms mentioned in this section apply the rule

lim
x!x0

f(g(x)) = f(lim
x!x0

g(x));

which follows from Lemma 2.3 on the composition of limits. As we have seen

in Section 2.2.1, this rule is only valid if f is continuous at limx!x0 g(x).

Unfortunately, it is rather di�cult to decide in a computer algebra system

whether a function is continuous or not at a given point. Note that the limit

facility should not be used on f(g(x)) to answer this question in this particular

2.3 Computational Approach 23

situation. Some systems are simplistic and assume continuity if nothing else

is known. As a consequence, wrong results may be returned. We give two

examples here. The �rst one is limx!0dxe, which is unde�ned. The right-

hand limit at 0 is 1 and the left-hand limit is 0. We use the special Limit.m

package [4] written in Mathematica. It seems that the code does not realize

the discontinuity at x = 0 and simply replaces x with 0 in dxe which then

simpli�es to 0.

In[1]:= <<Calculus/Limit.m

In[2]:= Limit[Ceiling[x], x -> 0]

Out[2]= 0

In[3]:= Limit[Ceiling[x], x -> 0, Direction -> -1] (* from above *)

Out[3]= 0

Another example which is more di�cult, and which is done incorrectly by

almost all systems, is the limit on branch cuts of the principal value of

multi-valued functions such as the square root. Let us consider the limit

limx!0+ arctan(2 i � x). The limit of the argument of the arctan lies on the

imaginary axis, where arctan is discontinuous. The correct result is

lim
x!0+

arctan(2 i� x) = arctan(2i) � � = i arctanh(2) � � = (i ln 3� �)=2;

which can be veri�ed with numerical approximations. Macsyma, Mathe-

matica and Axiom however return the wrong result:

(c1) limit(atan(2*(-1)^(1/2)-x), x, 0, plus);

(d1) %i atanh(2)

In[1]:= Limit[ArcTan[2*(-1)^(1/2)-x], x -> 0, Direction -> -1]

Out[1]= I ArcTanh[2]

(1) ->limit(atan(2*(-1)^(1/2)-x), x=0, "right")

+---+
(1) atan(2\|- 1)

Type: Union(OrderedCompletion Expression Integer,...)

The problem is that these systems test for continuity using a Taylor series

expansion of arctan(x) at x = 2i. All three systems return for this series

a result which indicates that arctan(x) is continuous at x = 2i, although

numerical approximation of arctan(x) in the neighbourhood of x = 2i shows

that all systems de�ne the line [i;1i) as branch cut for arctan(x). This

particular problem is discussed in detail in Section 7.4.

2.3.2 Power Series Approach

Zippel [95] proposed an algorithm which is not based on heuristics, but rather

on the concept of univariate power series expansion. In order to compute the

24 2. Computing Limits: An Overview

limit of f(x) at x0, the power series of f(x) at x0 is computed. This power

series only exists, if f(x) is continuous at x = x0, hence only two-sided limits

are considered with this approach. With a linear or a bilinear transformation

x0 can be transformed to the origin and thus we may assume x0 = 0. If f(x)

has the power series expansion

f(x) = c0 x
e0 + c1 x

e1 + � � �

at x = 0, then the limit of f(x) is 0 if e0 > 0, c0 if e0 = 0 and �1 if e0 < 0.

The sign of the latter result depends on the sign of c0, on e0 and, in case that

e0 is odd, on the direction 0 is approached.

One major advantage of this approach over the heuristic ones is that it is

quite easy to incorporate new functions. As soon as the underlying series

model gets updated the limit facility can pro�t thereof. For the heuristic

approach however, all the heuristics concerning for example transformations

need to be updated. Further changes are then normally needed at various

other places in the system.

The type of series Zippel considered may also contain logarithmic singularities

in their coe�cients (similar to Maple's series model), but the problem of

higher order essential singularities is ignored. He considers \the complete

incorporation of the higher class essential singularities in a power series system

to be one of the most di�cult of all the problems".

Also, with this restriction it may happen that a function is analytic at the

expansion point but contains some subexpressions which have essential singu-

larities there. The straightforward series expansion algorithms hence fail. An

example is

lim
x!0

e
csc x

e
cotx

: (2.4)

Both the numerator and the denominator contain essential singularities at

x = 0 since both csc x and cotx have a pole of order one at the origin.

> series(exp(csc(x))/exp(cot(x)), x);

Error, (in series/exp) unable to compute series

However, if the function in (2.4) is simpli�ed, i.e. if the two exponentials are

combined, then the two poles cancel and a Taylor series expansion can be

computed without problems.

> combine(exp(csc(x))/exp(cot(x)), exp);

e
csc(x)�cot(x)

> series(", x);

1 +
1

2
x+

1

8
x

2 +
1

16
x

3 + O

�
x

4
�

2.3 Computational Approach 25

The leading term is 1 and thus the result of (2.4) is also 1. Note that again

heuristics would be necessary to perform the right transformations, and more-

over not all problems can be solved with such an approach.

Zippel proposed another technique to handle essential singularities, namely

to allow a power series be multiplied by an essential singularity. For the

example (2.4) the series of both the numerator and the denominator become

e
cscx = e

(x�1+ 1
6
x+ 7

360
x
3+O(x5)) = e

1=x

�
1 +

1

6
x+

1

72
x
2 + O(x3)

�

e
cotx = e

(x�1� 1
3
x� 1

45
x
3+O(x5)) = e

1=x

�
1� 1

3
x+

1

18
x
2 +O(x3)

�
:

When the two series are divided, the essential singularities cancel and we

obtain the expected power series.

As Zippel has pointed out, this technique is extremely dangerous if it is not

applied properly, since the essential singularity terms dominate the power

series, unlike the logarithmic terms. A straight forward computation with

essential singularities would yield the \power series"

1

1 + x e
1=x

= 1� e
1=x

x+ e
2=x

x
2 + O

�
e
3=x

x
3
�

which, although formally valid, is completely foolish.

We mention these ideas since they form the basis of the generalized series

approach which is discussed next and which is the basis of our algorithm.

Additionally, we want to note that our algorithm manages to perform the

necessary transformation automatically on limx!0 e
csc x

=e
cotx and �nally also

computes the power series of ecsc x�cotx (cf. Example 5.3).

2.3.3 Generalized Series Approach

The algorithm proposed by Geddes and Gonnet [27] is based on the unifying

concept of series expansion. In order to overcome the limitations inherent in

Zippel's approach, they de�ned the concept of hierarchical series. A hierar-

chical series of a function f(x) is a sum of terms of the form

f(x) = s1(x)h1(x) + s2(x)h2(x) + � � �

where each si(x) is a generalized power series and each hi(x) is a canonical

representation of an essential singularity. It approximates the function f(x)

in a right-neighbourhood of 0. As a consequence only one-sided limits are

considered. A generalized power series is a Puiseux series whose coe�cients

may be (bounded) functions, and the hi's are strictly ordered according to

their growth, i.e.

26 2. Computing Limits: An Overview

8 k 2 IN : lim
x!0

jhi+1(x)x
kj

jhi(x)j
= 0:

An extension of this approach was used by Salvy [71] in his thesis. He used

asymptotic series expansion of the form

f(x) = a1(x)'i1(x) + a2(x)'i2(x) + � � �

where the 'i are functions from an asymptotic scale S = f'igi2I and the

ai(x) are bounded functions. S is called an asymptotic scale, if

lim
x!x0

j'j(x)j
j'i(x)j = 0 for i < j:

This latter approach is implemented in the Maple package gdev [70] (which

stands for generalized development).

All limit algorithms in this class are based on the idea of expanding the func-

tion into a kind of generalized series and then of examining the leading term.

For the series expansion an algorithm similar to Algorithm 2.16 is used, which

expands the function inside out (or bottom up if we look at the expression

tree representation of the function).

Algorithm 2.16 Bottom Up Recursive Algorithm

series(e)

if e =
P
ei! RETURN(

P
series(ei))

elif e =
Q
ei! RETURN(

Q
series(ei))

...

elif e = f(z)! x0 := limit(z);

s := series(z);

if f(x) has essential singularity at x = x0 !
RETURN(HandleEssentialSingularity(f; x0; s))

elif f(x) has a pole at x = x0 !
RETURN(HandlePole(f; x0; s))

else RETURN

� 1P
k=0

f
[k](x0) (s� x0)

k
=k!

�
fi

...

fi

The problem this algorithmmay run into is called the cancellation problem [77,

p. 617]. If the algorithm is computing the series expansion at a node in the

expression tree of the given function it may happen that all terms computed

2.3 Computational Approach 27

vanish and that the algorithm keeps calling forever for new terms of the series

of the arguments. This obviously happens if the sub expression which is

expanded is identically zero, as e.g. for sin2 x + cos2 x � 1 or even simpler

for ex � e
x. These cases can be caught with a test for zero equivalence.

Unfortunately, the cancellation problemmay also appear if the function which

is expanded is not the zero function.

Example 2.17 Consider the following limit problem which we try to solve

using a generalized power series approach:

lim
x!+1

e
x
�
sin
�
1=x+ e

�x�� sin
�
1=x
��
: (2.5)

The arguments of the two sin functions both tend to zero at x = +1 and thus

these subexpressions can directly be expanded into their power series. This

leads to the expression

e
x

� ��
1
x
� 1

6x3
+ 1

120x5
+ : : :

�
+
�
1� 1

2x2
+ 1

24x4
+ : : :

�
e
�x + : : :

	
� � 1

x
� 1

6x3
+ 1

120x5
+ : : :

� �
which needs to be expanded further. The powers in x dominate the series

expansions of the two sin functions. In the di�erence however, all these terms

cancel out. If we compute the di�erence of the two sin functions in a straight-

forward manner, we will never get an answer. Let us demonstrate this be-

haviour with the gdev package, which uses the generalized series approach.

> gdev(sin(1/x + 1/exp(x)), x=infinity, 4);�
1

x

�
+

�
�1

6

1

x
3

�
+

�
� 1

5040

1

x
7

�
+

�
O

�
1

x
9

��

> gdev(sin(1/x), x=infinity, 4);�
1

x

�
+

�
�1

6

1

x
3

�
+

�
� 1

5040

1

x
7

�
+

�
O

�
1

x
9

��

> gdev(sin(1/x + 1/exp(x)) - sin(1/x), x=infinity, 4);�
O

�
1

x
15

��

The last answer returned by gdev is correct, since the asymptotic power series

of sin(1=x+ e
�x)� sin(1=x) at x = +1 is indeed 0+ 0x�1+ 0x�2+ 0x�3+

0x�4 + � � � although the function is not zero. One can also say that the

two series expansions of sin(1=x+ e
�x) and sin(1=x) are equal for the �rst n

terms for any �nite n. The information that the arguments of two functions

were di�erent is lost at this point, i.e. if only the �rst n terms of the series

expansions of the two sin functions are available.

28 2. Computing Limits: An Overview

However, if we know that the dominant terms all cancel out, then we can

cancel them by hand and obtain the expansion

e
x

�
sin(

1

x

+ e
�x)� sin(

1

x

)

�
�
�
1� 1

2x2
+

1

24x4
� 1

720x6
+ : : :

�
+ O(e�x)

for our function. As a consequence the result of (2.5) is one. However, auto-

matically realizing that all dominant terms cancel out is not a trivial task.

Problem (2.5) could directly be resolved if we expand the �rst sin function

and collect the terms appropriately. We then get the function

e
x sin(1=x) (cos(e�x) � 1) + e

x cos(1=x) sin(e�x)

whose generalized series expansion can be computed with the help of gdev.

> gdev(exp(x)*sin(1/x)*(cos(exp(-x))-1), x=infinity);�
�1

2

1

x e
x

�
+

�
O

�
1

x
3
e
x

��

> gdev(exp(x)*cos(1/x)*sin(exp(-x)), x=infinity);

(1) +

�
O

�
1

x
2

��

Note that the expression has been broken up in such a way that the two

series can be expanded in their appropriate asymptotic scales. However such

a solution can only be generalized into a heuristic and is thus disquali�ed

for obvious reasons. Furthermore, not all functions can be expanded like the

sin function. The latter approach would therefore fail if we replaced the sin

function with the Gamma function in example (2.5). {

With this example we have demonstrated that it is not always that easy to

�nd the right entry in the asymptotic scale in which the series expansion has

to be performed. The problem is aggravated by the fact that a wrong choice of

the expansion of a particular subexpression may only be detected at a higher

level in the expression tree, and the series expansions of the subexpressions

would thus have to be redone. Furthermore there is the additional problem

of detecting cancellation. The gdev procedure simply gives up if more than a

bounded number of terms cancel.

Shackell [77, 80] proposed an algorithmwhich resolves this problem. The basic

idea of his solution is that each series expansion contains in its last term the

whole rest of the series. In other words, a series expansion is no longer an

approximation of a function but rather just another representation for it. No

information is ever lost and the cancellation problem, once detected, can be

resolved. The detection of the cancellation problem is done with the help of

zero equivalence tests. For more details we refer to Chapter 4.

2.3 Computational Approach 29

Our solution solves this problem by simply steering clear of it. We do not take

any precautions for the case that the cancellation problem may show up, as

in Shackell's approach, but rather operate in such a way that the cancellation

problem never appears. Recall that we ran into the cancellation problem in

Example 2.17 since the expansion of the sin functions was performed in terms

of x instead of e�x. Roughly speaking, there are always several possible forms

in which a function can be expanded. It turns out that these functions can

be ordered according to their growth: f � g if and only if ln jf j = o(ln jgj),
e.g. x � e

x. The cancellation problem only appears if a function is expanded

in terms of a function which is too small. In our algorithm we expand the

whole function always in terms of the largest possible scale entry. We denote

this as the \most rapidly varying" subexpression. If necessary, this process

may be applied again to the leading coe�cient of this series. However, as a

consequence, the cancellation problem can never appear and so our approach

overcomes the di�culties inherent in the generalized series approach.

30

3. Algorithm for Computing Limits of exp-log

Functions

In this chapter we will present our algorithm for computing limits. As we out-

lined at the end of the last section, we also use a series expansion approach,

but we �rst determine the most rapidly varying term, on which we perform

the expansion. However, we have not yet speci�ed how this order is de�ned

and which class of function can be treated with this approach. It turns out

that Hardy �elds are the natural domain in which to work. In the �rst section

we thus recall some facts from the theory of Hardy �elds. A more compre-

hensive overview can be found in the papers of Rosenlicht [67, 68, 69] and

in [79]. For the rest of the chapter we will then restrict our view to exp-log

functions (de�ned below). After a discussion of the current state of deciding

zero equivalence in this particular function �eld we will present the details of

the algorithm and of the proof of its termination. In Chapter 5 we will discuss

how the algorithm can be extended to other function classes.

3.1 Hardy Fields

We shall consider real functions of a real variable x which are de�ned in a

semi-in�nite interval x > x0 2 IR. Let K be the set of all these functions.

We can de�ne an equivalence relation on K as follows: Let f1 and f2 be two

elements of K which are de�ned for x > x1 and x > x2 respectively, then

f1 is said to be equivalent to f2 if there exist an x0 > max(x1; x2) so that

f1(x) = f2(x) for all x > x0. The equivalence classes of K with respect to this

equivalence relation are called the germs of functions at +1. We identify a

germ of functions at +1 with any representative member, and we will thus

refer to germs as functions. The derivative of a germ f is the equivalence class

formed by the derivative of any element of g. It is obvious to see that this

de�nition of the derivative of germs is well-de�ned, that is, that the derivatives

of two functions in the same germ are also in the same germ.

De�nition 3.1 (Hardy �eld [10, p. V.36]) A Hardy �eld is a set of germs

of real-valued functions on positive half lines in IR that is closed under di�er-

32 3. Algorithm for Computing Limits of exp-log Functions

entiation and that forms a �eld under the usual addition and multiplication

of germs.

IfH is a Hardy �eld and f 2 H�, i.e. f is a non-zero element of H, then H con-

tains an element 1=f . This implies that f(x) 6= 0 for x 2 IR su�ciently large.

Since f 0 2 H, f is di�erentiable for x su�ciently large, therefore continuous,

and thus f is either always positive or always negative or zero. The same

holds for f 0 2 H hence each f is ultimately monotonic. As a consequence, for

each f 2 H, limx!+1 f(x) exists and is either a �nite constant in IR or �1.

Examples of simple Hardy �elds are Q and IR, i.e., function �elds where

all functions are constants and where the derivatives of all functions are the

constant function zero. The following theorems allow us to extend a given

Hardy �eld. The proof of the second theorem is due to M. Singer and can be

found in [67].

Theorem 3.2 (Robinson [66]) Let H be a Hardy �eld, f 2 H[x] with
f 6= 0. Let y be the germ of a continuous, real-valued function on a positive

half line such that f(y) = 0. Then H(y) is a Hardy �eld.

Theorem 3.3 (Singer) Let H be a Hardy �eld, f; g 2 H[x] with g 6= 0. Let

y be the germ of a di�erentiable, real-valued function on a positive half line

such that y0 = f(y)=g(y). Then H(y) is a Hardy �eld.

As a consequence, IR(x) (x0 = 1) is a Hardy �eld, and exponentials (y0 = y e
0)

and logarithms (y0 = e
0
=e) of elements can be added to a Hardy �eld as well.

The �eld which is obtained from IR(x) by closing it under the operations

f ! exp(f) and f ! log jf j is called L-�eld (or logarithmico-exponential

�eld or �eld of exp-log functions for short) and was investigated by Hardy

himself [36]. Since ab = e
b ln a, L also contains real powers of positive elements.

Hardy proved that every L function is ultimately continuous, of constant sign,

monotonic, and tends to �1 or to a �nite real constant as x! +1 [36, p. 18].

3.1.1 Valuation

Let a; b 2 H�, then we write a � b if a(x)=b(x) tends to a non-zero, �nite

limit. The relation � is an equivalence relation on H�. Let us denote the

equivalence class of a 2 H� as �(a) and the set of all equivalence classes of

H� as � = f�(a) j a 2 H�g. � is an Abelian group under the multiplicative

operation inherited from H�. Furthermore, the set � is totally ordered due

to the relation �(a) > �(b) if limx!+1 a(x)=b(x) = 0. This observation is

summarized in the following theorem:

3.1 Hardy Fields 33

Theorem 3.4 (Rosenlicht [67, Theorem 4]) Let H be a Hardy �eld.

Then there exists a homomorphism (a canonical valuation) � from H� onto

an ordered Abelian group with �(1) = 0, such that

(1) if a; b 2 H�, then �(ab) = �(a) + �(b);

(2) if a 2 H�, then �(a) � 0 if and only if limx!+1 a(x) 2 IR;

(3) if a; b 2 H� and a+b 2 H�, then �(a+b) � min(�(a); �(b))with equality

if �(a) 6= �(b);

(4) if a; b 2 H� and �(a); �(b) 6= 0, then �(a) � �(b) if and only if �(a0) �
�(b0);

(5) if a; b 2 H� and �(a) > �(b) 6= 0, then �(a0) > �(b0).

From (1) follows directly that for any a 2 H�, �(a�1) = ��(a), and together

with (2) we see that �(a) < 0 if and only if a(x) tends to �1, that �(a) > 0

if and only if a(x) tends to zero, and that �(a) = 0 if a(x) tends to a non-zero

�nite limit as x! +1. Furthermore, (3) can be extended to the whole H if

we de�ne �(0) = +1. Note that (4) follows directly from l'Hôpital's rule (cf.

Lemma 2.8) for x! +1.

3.1.2 Comparability Classes and Rank

We can now de�ne the measure of growth we will use in our algorithm. It

is the notion of a comparability class as it was introduced in [68]. Nonzero

elements � and � of an ordered Abelian group are called comparable if there

exist positive integers m;n so that mj�j > � and nj�j > �. This relation

de�nes an equivalence relation on the set of non-zero elements of a ordered

Abelian group.

Let us now apply this de�nition on the Abelian group � . Two functions in H�

are comparable if mj�(f)j > j�(g)j and nj�(g)j > j�(f)j. Translated back to

the Hardy �eld H we get the de�nition that two non-zero elements f and g of

H with f; g ! +1 are called comparable if there exist positive integers m and

n so that �(fm=g) < 0 and �(gn=f) < 0, i.e., limx!+1 f(x)m=g(x) = +1
and limx!+1 g(x)n=f(x) = +1. In other words, f and g have both to

be bounded above and below by suitable integral powers of the other. For

this translation we used the fact that �(fm) = m�(f) and �(gn) = n�(g)

according to Theorem 3.4 (1). This de�nition may be extended to the whole

H� by specifying �rstly that �f and �1=f are in the same comparability

class, and secondly, that all a with �(a) = 0 form their own comparability

class (following the convention of Shackell [79]). The comparability class of f

is denoted by (f). If f and g both tend to +1, then we call (f) greater

34 3. Algorithm for Computing Limits of exp-log Functions

than (g) if f is greater than any power of g, i.e. �(f) < p�(g) for all p 2 IN.

We additionally specify that (1) is the lowest comparability class. Thus is

de�ned on the whole H� and the comparability classes are totally ordered.

We also use the notation f � g for (f) > (g) and we will say \f is more

rapidly varying than g". Furthermore we write f � g if f and g are in the

same comparability class, and f � g if (f) � (g).

Examples:

e
x � x

m

e
x
2 � (ex)2

e

x � e

x+e�x

e
e
x � e

x+e�e
x

e

x ln x ln(xex�x2) � ln
�
x

2 + 2 ee
3 x3 ln x

�
e

x ln x(ln(xex�x2))2 � ln
�
x

2 + 2 ee
3 x3 ln x

�

The number of di�erent comparability classes of H� minus one is called the

rank of H. For example, the Hardy �eld IR(x; lnx; ex) has rank 3. The

comparability classes are (1), (x), (lnx) and (ex).

We show next how the valuation and the comparability classes are related

to each other. The following lemma is an extended version of Proposition 4

in [68].

Theorem 3.5 (Shackell [79, Lemma 1]) Let H be a Hardy �eld, a; b 2 H�

with �(a); �(b) 6= 0. Then

(1) �(a0=a) = �(b0=b) if and only if (a) = (b);

(2) �(a0=a) > �(b0=b) if and only if (a) < (b);

(3) �(a0=a) � �(b0=b) if and only if (a) � (b).

To be precise, (3) appeared as Proposition 1 in [69] and is an obvious conse-

quence of (1) and (2).

The above theorem together with Theorem 3.4 (4) and (5) gives us a nice way

to compare the comparability classes of two functions.

Lemma 3.6 Let H be a Hardy �eld with IR � H and f; g 2 H� with

�(f); �(g) 6= 0. Then

(1) f � g if and only if lim
x!+1

ln jf(x)j
ln jg(x)j = 0;

3.1 Hardy Fields 35

(2) f � g if and only if lim
x!+1

ln jf(x)j
ln jg(x)j 2 IR;

(3) f � g if and only if lim
x!+1

ln jf(x)j
ln jg(x)j 2 IR�.

Proof. The result follows directly as a consequence of Theorems 3.5

and 3.4 (4) and (5). For example for (2) we have f � g if and only if

�(f 0=f) � �(g0=g) if and only if �(ln jf j) � �(ln jgj) which holds by de�ni-

tion if limx!+1 ln jf(x)j= ln jg(x)j 2 IR.

For clari�cation purposes we state a direct proof for (1). Let us assume

that both f and g ultimately tend to +1. f � g holds if and only if

�(g) < �(fp) for all p 2 IN. By de�nition this holds if limx!+1 f(x)p=g(x) =

limx!+1 e
p ln(f(x))�ln(g(x)) = 0 and this is true if ln(g) � p ln(f) = ln(g)(1 �

p ln(f)= ln(g)) ultimately tends to +1. As ln(g) already ultimately tends to

+1 only the sign of limx!+1 1 � p ln(f(x))= ln(g(x)) must be positive, i.e.,

the relation ln(f)= ln(g) < 1=p must ultimatively be satis�ed for all p 2 IN.

The latter condition however is only met if limx!+1 ln(f(x))=ln(g(x)) = 0.

2

Lemma 3.7 Let H be a Hardy �eld, f; g 2 H� with �(f); �(g) 6= 0, then

�(f) = �(g)) (f) = (g):

Proof. From Theorem 3.4 (4) follows that �(f) = �(g) if and only if �(f 0) =
�(g0). Thus, �(f) = �(g) implies �(f 0)��(f) = �(g0)��(g) which is equivalent
to �(f 0=f) = �(g0=g) according to Theorem 3.4 (1). The latter equation is

true if and only if (f) = (g) as stated in Lemma 3.5. 2

Lemma 3.8 Let H be a Hardy �eld, f; g 2 H� with �(f); �(g) 6= 0 and

f
0
=f + g

0
=g 2 H�. Then

(f g) � max((f); (g))

with equality if (f) 6= (g).

Proof. Theorem 3.5 implies that (f g) � max((f); (g)) if and only if

�(f
0
g+fg0

f g
) = �(f 0=f + g

0
=g) � min(�(f 0=f); �(g0=g)) and the latter relation

holds according to Theorem 3.4 (3), with equality if �(f 0=f) 6= �(g0=g), which
is equivalent to (f) 6= (g). 2

The next lemma is well known from calculus and can be proven using l'Hôpi-

tal's rule. We prove it here in the context of Hardy �elds using the theorems

stated above.

36 3. Algorithm for Computing Limits of exp-log Functions

Lemma 3.9 Let H be a Hardy �eld, f; g 2 H� with �(f) 6= 0 and �(g) < 0,

then

(1) (ln jf j) < (f), and

(2) (eg) > (g),

where ln jf j and eg are in an extension �eld H1 � H.

Proof. (1) According to Theorems 3.5 and 3.4, (f) > (ln jf j) if and only

if �(f 0=f) < �((f 0=f)= ln jf j)) = �(f 0=f) + �(1= ln jf j), thus we have to show

that �(1= ln jf j) > 0, but this holds since �(f) 6= 0.

(2) Similarly we have (g) < (eg) if and only if �(g0=g) > �(eg g0=eg) = �(g0),
and the latter is true if �(1=g) > 0, but that is what the precondition �(g) < 0

asserts. 2

In the subsequent sections we will restrict our attention to the �eld of exp-log

functions. An extension of the algorithm to other Hardy �elds is discussed in

Chapter 5.

3.2 Zero Equivalence

In order to compare two comparability classes we must be able to decide

whether �(f) > �(g). This problem is also called the dominance problem [60].

Dahn & G�oring [20] have shown that for exp-log functions this problem is

Turing reducible to the problem of deciding zero equivalence for exp-log con-

stants. However, they did not give an algorithm for this reduction. That is

what Shackell has done in [77] and what we will do in the next section.

There is a somewhat simpler problem than the dominance problem, namely

the problem of deciding whether a given exp-log function is identically zero.

This problem is called the identity problem, and it is also Turing reducible to

the identity problem of exp-log constants.

Hardy showed in [36], that a non-zero exp-log function has only a �nite number

of real zeros. Richardson [60] and Macintyre [49] showed how to bound the

number of zeros. If the function is zero at more points than the bound allows,

then it must be the zero function. However, this algorithm is not a very

practical one since �rstly the bound may be rather large and secondly the

methods involve di�erentiating the given expression to a high order, which

can cause the size of the expression to grow rapidly [16].

Another perhaps more practical approach, which is based on the use of the

structure theorems of Risch [65, 12], is to determine all algebraic dependencies

3.3 The MrvLimit Algorithm 37

between the basic functions making up the given function. The problem is

thus reduced to the algebraic case. However, the structure theorem computa-

tions are also quite di�cult. A similar approach based on di�erential algebra

methods has been presented by Shackell [76, 81].

Thus, for solving either the dominance problem or the identity problem for

exp-log functions, zero equivalence must be decidable for exp-log constants.

Unfortunately, for the identity problem of exp-log constants itself, no solu-

tion is actually known at the present time. The zero equivalence of exp-log

constants is decidable if Schanuel's conjecture is true. D. Richardson [62, 63]

presented an algorithm which solves this problem and which (eventually) ter-

minates, unless it is working on a counter example to Schanuel's conjecture.

As a consequence, we assume that the constants can somehow be handled. In

particular, we postulate the existence of an oracle which can determine the

sign of exp-log functions. Note that if the function is non-zero, then its sign

can be determined in practice by successive approximations [60], e.g., using

interval arithmetic.

3.3 The MrvLimit Algorithm

We have the material available to present an outline of our algorithm now.

Let f 2 L be an exp-log function whose (one sided) limit is to be computed.

We assume that we can always access the functions in L in the form of an

expression tree, i.e., a tree whose leaves are either x or are elements of Q,

and whose nodes are labeled with rational operations or with the functions

exp or log. Note that expressions and functions are not equivalent, since every

function may be represented by many di�erent expression trees, in the context

of a computer algebra system however, every function is normally given as one

particular expression. By some abuse of notation we speak of an expression

when we mean the function it represents.

In order to compute the limit of f we �rst look at all the subexpressions (sub-

nodes) of the expression tree of f . We then determine those in the greatest

comparability class and call them the set
 of most rapidly varying subex-

pressions. Let ! be an exp-log function which is in the same comparability

class as the elements in
 and let us assume that ! > 0 and that ! tends to

0. We rewrite all the elements in
 in terms of ! and other expressions of

lower order. The expression f can then be rewritten so that all subexpressions

except ! are in a lower comparability class than ! itself.

The rewritten function is then expanded as a series in ! around ! = 0+. This

series expansion has the form

c0 !
e0 + c1 !

e1 + � � �+O (!en) ; (3.1)

where for all i we have ei 2 C � IR and ei < ei+1, and the most rapidly

varying subexpression of every ci is in a lower comparability class than !.

38 3. Algorithm for Computing Limits of exp-log Functions

Moreover, the leading coe�cient c0 must not be 0. C is the constant �eld of

the function class under consideration, in our case C = const(L) is the set of
exp-log constants.

Once we have found the series approximation (3.1), we can use the same

arguments as in the power series approach (Section 2.3.2). If the leading

exponent e0 > 0 then the limit of f is 0 (remember that ! ! 0). If e0 < 0

the limit is �1 where the sign depends on the sign of c0. If e0 = 0 �nally,

then the limit of f is equivalent to the limit of the leading coe�cient c0. In

this case the algorithm is applied recursively to c0 (unlike in the power series

approach where the leading coe�cient is a constant).

During the process of the series expansion (and not only at the end of it) we

must assert, in some particular situations, that the leading coe�cient of the

series expansion of a subexpression is not zero. Otherwise wrong results may

emerge (see Section 7.2 for examples). This is one situation where the postu-

lated oracle for testing zero equivalence is used in our algorithm. Furthermore,

the oracle is used to compare elements in C.
Let us recall the particular steps of our algorithm to compute the limit of f(x)

as x tends to x0.

(1) Determine the set
 of the most rapidly varying subexpressions of f(x)

(see Section 3.3.1). Limits may have to be computed recursively in this

step (cf. Lemma 3.6).

(2) Choose an expression ! which is positive and tends to zero and which is

in the same comparability class as any element of
. Such an element

always exists. Rewrite the other expressions in
 as A(x)!c where A(x)

only contains subexpressions which are in lower comparability classes

(Section 3.3.2).

(3) Let f(!) be the function which is obtained from f(x) by replacing all

elements of
 by their representation in terms of !. Consider all ex-

pressions independent of ! as constants and compute the leading term

of the power series of f(!) around ! = 0+ (see Section 3.3.3).

(4) If the leading exponent e0 > 0 then the limit is 0 and we can stop. If

the leading exponent e0 < 0 then the limit is �1. If we only have to

solve the dominance problem, we can stop in this situation as well. The

sign is de�ned by the sign of the leading coe�cient c0, which can be

computed in a similar manner. If the leading exponent e0 = 0 then the

limit is the limit of the leading coe�cient c0. If c0 62 C we must apply

the same algorithm recursively on c0.

In the following sections we describe these steps of the algorithm in more

detail. When executing step (2), new expressions may be generated whose

comparability class do not appear in the set of the comparability classes of all

3.3 The MrvLimit Algorithm 39

the subexpressions of f(x). Furthermore, the limit facility is used recursively

at several places in the algorithm. In Section 3.4 we will prove that the

algorithm does terminate nevertheless.

3.3.1 Computing the Most Rapidly Varying Subexpressions

In this section we show how to determine the set of most rapidly varying

subexpressions of a given function f(x). This set is denoted by mrv(f(x)). If

f(x) does not depend on x at all, then we set mrv(f(x)) = fg. The relation
\to be a subexpression" will be used rather often and thus we de�ne the

following notation: If h(x) is a subexpression of g(x) we write h(x) � g(x).

De�nition 3.10 (mrv-set)

mrv

�
f(x)

�
=

8><
>:

fg if x 6� f(x)

n
g(x) j g(x) � f(x) ^

�
=9 h(x) � f(x) : h(x) � g(x)

�o

As the mrv set depends on the form of the expression which represents the

function f(x), mathematically equivalent expressions may have di�erent mrv

sets.

De�nition 3.10 implies that all the elements in
 = mrv(f(x)) are in the

same comparability class. Let g1; g2 2
 be two subexpressions of f . g1 2

implies that =9 h � f with h � g1, thus g2 � g1. We can similarly conclude

g1 � g2 if we interchange g1 and g2, therefore g1(x) � g2(x).

As all elements in a mrv set are in the same equivalence class, we allow the

notation mrv(f(x)) � g(x) and mean that g(x) is in the same equivalence

class as any element of mrv(f(x)), provided that the latter is not empty,

or that otherwise g(x) 2 C. The next observation also follows directly from

De�nition 3.10.

Fact 3.11 Let f(x) be a function. Then

8 g(x) � f(x) =) mrv(f(x)) � g(x):

Since f(x) � f(x) it follows that mrv(f(x)) � f(x).

In order to determine the set of most rapidly varying subexpressions of f(x)

we must look at all subexpressions of f(x) and pick up those in the highest

comparability class. As the comparability class of a product cannot be greater

40 3. Algorithm for Computing Limits of exp-log Functions

than the classes of its factors, it is enough to investigate only the factors of a

product. Even if (ab) = (a) = (b) it is enough only to record a and b in

the mrv set, since if we rewrite both a and b in terms of !, the product ab

gets rewritten as well. For a sum the story is slightly more complicated, but

it turns out, that (a + b) � max((mrv(a)); (mrv(b))) and thus it is also

su�cient only to look at the terms of a sum. This leads to Algorithm 3.12 for

computing the set of most rapidly varying subexpressions of a given function

f .

Algorithm 3.12 Computing the mrv set of f

mrv(f : exp-log function in x)

if x 6� f ! RETURN(fg)
elif f = x ! RETURN(fxg)
elif f = g � h ! RETURN(max(mrv(g);mrv(h)))

elif f = g + h ! RETURN(max(mrv(g);mrv(h)))

elif f = g
c ^ c 2 C ! RETURN(mrv(g))

elif f = ln g ! RETURN(mrv(g))

elif f = e
g !

if limx!+1 g = �1 ! RETURN(max(fegg;mrv(g)))
else RETURN(mrv(g))

fi

fi

The function max() computes the maximum of two sets of expressions which

are in the same comparability class, i.e. max() compares (two elements of) its

argument sets and returns the set which is in the higher comparability class

or the union of both, if they have the same order of variation.

The rule formrv(ln g(x)) is in accordance with Lemma3.9. If �(g(x)) 6= 0 then

ln g(x) � g(x) and thus mrv(ln g(x)) = mrv(g(x)). Otherwise, if �(g(x)) = 0

then the limit of ln g(x) is �nite as well and (g(x)) = (ln g(x)) = (1) and

both g(x) and ln g(x) will never appear in any mrv set. It is hence enough to

search for the most rapidly varying subexpression within g(x).

The case where the argument is an exponential eg(x) is the only di�cult one.

If �(g(x)) � 0 then (eg(x)) = (1) and mrv(eg(x)) = mrv(g(x)). If however

�(g(x)) < 0, then (eg(x)) > (g(x)) (cf. Lemma 3.9 (2)) and mrv(eg(x)) =

max(feg(x)g;mrv(g(x))), i.e. it is either feg(x)g or mrv(g(x)) or the union of

both. The following examples illustrate these three possibilities:

3.3 The MrvLimit Algorithm 41

mrv

�
e
x+1=x

�
= fex+1=xg

mrv

�
e
x+e�e

x
�

= fe�exg
mrv

�
e
x+e�x

�
= fex+e�x ; exg:

For the computation of the mrv set of eg(x) we have to determine the limiting

behaviour of the argument g(x). This is a recursive call to the limit facil-

ity. However, the algorithm does not enter into an in�nite loop, since g(x)

is a smaller expression than e
g(x), which by itself is a subexpression of the

expression whose limit is currently being computed. Thus the size of an ex-

pression (e.g., height of the expression tree) is an upper bound for the number

of iterations.

Example 3.13 As an example we compute the mrv set of f = e
x+e�x

2

. The

limit of x+ e
�x2 is +1 and we therefore must compare f with an element of

mrv(x + e
�x2). For the latter we get

mrv

�
x+ e

�x2
�

= max
�
mrv(x);mrv

�
e
�x2
��

= max
�
fxg; fe�x2g

�
=
n
e
�x2
o

where max refers to the relation �. The comparison of f with e�x
2

is done ac-

cording to Lemma 3.6 by computing the limit of the quotient of the logarithms

of the two functions,

lim
x!+1

ln ex+e
�x2

ln e�x2
= lim

x!+1
x+ e

�x2

�x2 = lim
x!+1

�1

x

� e
�x2

x
2

= 0

and hence mrv(f) = fe�x2g.
Further examples:

mrv

�
e

1
x
+e�x

�
= fe�xg

mrv

�
e
x
2

+ x e
x +

ln(x)x

x

�
= fex2g

mrv

�
e
x

�
e

1
x
+e�x � e

1
x

��
= fex; e�xg

mrv

�
ln
�
x
2 + 2 ee

3 x3 ln x
��

= fee3 x
3 ln xg

mrv

�
ln(x�ln x)

ln x

�
= fxg

{

From the structure of Algorithm 3.12 to compute the mrv-set we can deduce

the following lemma:

42 3. Algorithm for Computing Limits of exp-log Functions

Lemma 3.14 Let f(x) be an exp-log function with x � f(x) and let
 =

mrv(f(x)) be the set of most rapidly varying subexpressions of f(x). Then

for every g(x) 2

(1) g(x) = x or g(x) = e
h(x) with h(x)!�1;

(2) the sign of g(x) is 1, i.e. g(x) > 0;

(3) �(g(x)) 6= 0;

(4) lim
x!+1

g(x) =

(1 if g(x) = x or g(x) = e
h(x) ^ h(x) > 0

0 if g(x) = e
h(x) and h(x) < 0

(5) g(x) � x;

(6) if g(x) = e
h(x) then mrv(h(x)) � g(x);

(7) g(x) 2 mrv(g(x)) �
.

Proof. Statement (1) follows directly from the structure of the algorithm.

The only results which are returned from the procedure are either the empty

set or sets which contain x or eh(x). Statements (2), (3) and (4) are simple

consequences thereof. Statement (5) is a consequence of Fact 3.11 as x � f(x)

implies mrv(f(x)) (� g(x)) � x. Statements (6) and (7) are consequences of

the De�nition 3.10 of the mrv set itself. 2

In the outline of the algorithm we said that we choose an expression which

is positive and tends to zero and which is in the same comparability class

as
 = mrv(f(x)). We see now that such an element always exists. Let

g(x) 2
. If g(x) = x then we can set ! = x
�1, and if g(x) = e

h(x) then we

can set ! = g(x) if h(x) < 0 and ! = e
�h(x) �
 otherwise. From Lemma3.14

it follows that for such a choice of !, ! > 0 and ! ! 0.

To complete the explanation of Algorithm 3.12 it remains to show how to

compare two mrv sets, as this is needed to compute the maximum of two

sets. Since all elements of a mrv set are in the same equivalence class, it is

enough to compare single representatives of each set only. By Lemma 3.14 (3)

we can simply apply Lemma 3.6 and compute the limit of the quotient of

the logarithms of the two. We will prove in Section 3.4 that this recursive

approach must terminate.

From Fact 3.11 it follows that x � f(x) implies mrv(f(x)) � x. In other

words, (x) is the smallest comparability class which can be returned when

computing mrv(f(x)), provided that x � f(x). However, if x 2 mrv(f(x))

then it may happen that f(x) does not have a power series expansion in

! = 1=x around ! = 0+. The simplest example for this is f(x) = lnx. This

3.3 The MrvLimit Algorithm 43

issue could be resolved if we use a more general tool than power series for

the series expansions in !. One possibility would be to use generalized power

series as de�ned in [27] in this situation. We will see in Section 3.3.4 how this

issue is resolved in our algorithm.

Example 3.15 As we know now how to determine the mrv set of a function,

we can demonstrate how the algorithm proceeds on a simple example which

does only lead to mrv sets with one element which do not have to be rewritten

and where the power series in ! can be computed. Let us compute lim
x!+1

f(x)

for

f(x) =
e
1=x�e�x � e

1=x

e
�x :

In Chapter 8 we will see what some other computer algebra systems return

on this problem (see example (8.1)).

The set of most rapidly varying subexpressions of f(x) is fe�xg and we replace
e
�x by ! and get (e1=x�! � e

1=x)=!. The series thereof around ! = 0 is

�e1=x � !0 +
1

2
e
1=x � !1 � 1

6
e
1=x � !2 +O(!3):

The leading term is �e1=x � !0 and the leading exponent is 0. Thus,

lim
x!+1

f(x) = lim
x!+1

�e1=x;

i.e. we have to apply the algorithm recursively to the leading coe�cient �e1=x.
Although the result is obvious now, let us follow the steps of the algorithm.

Next we computemrv(�e1=x) = mrv(1=x) = fxg and set ! = 1=x. The series

of �e! = �1 � ! +O(!2) and thus lim
x!+1

f(x) = �1. {

3.3.2 Rewriting Functions in the Same Comparability Class

If the set
 of most rapidly varying subexpressions of a given expression u

contains more than one element, then we must rewrite all of them in terms

of a single one, !, which is in the same comparability class than
. We have

just seen that any element in
 can be designated to be ! or 1=!. Therefore

it is enough to show that all elements in
 can be rewritten in terms of a

particular one in
. It turns out that this rewriting process is rather trivial

in our context.

We show next how to rewrite f in terms of g where f and g are two elements

in
 = mrv(u). We assume that x 62
 and that both f = e
s and g = e

t

are exponentials. The case where x 2
 is discussed in Section 3.3.4. From

Lemma 3.14 we know, that f > 0, g > 0, f 2 mrv(f) and g 2 mrv(g).

44 3. Algorithm for Computing Limits of exp-log Functions

According to Lemma 3.6, limx!+1 s=t = c 2 IR� as (f) = (g). As a

consequence and since f; g > 0 we can rewrite f as A � gc where

A =
f

g
c
= e

ln f�c ln g = e
s�c t

: (3.2)

When computing A we have to compute c as the result of another limit. We

will show in Section 3.4 that these recursive limit calls also cannot lead to an

in�nite recursion.

In the next lemma we show that A � g. Unfortunately, as we will see in

Example 3.17, the condition A � g is not strong enough. What we really

need is mrv(A) � g in order to have the guarantee that mrv(ci) � ! in the

series expansion (3.1) of u in terms of !.

Lemma 3.16 Let f; g be two exponentials so that f � g, f; g > 0 and let

A = e
ln f�c ln g where c = lim

x!+1
ln f
ln g

. Then A � g.

Proof. According to Lemma 3.6 we must show that lim
x!+1

lnA
ln g

= 0:

lim
x!+1

lnA

lng
= lim
x!+1

ln f � c ln g

ln g
= lim
x!+1

lnf

ln g
� c = c� c = 0:

2

Example 3.17 Let us compute the limit of u = 1=e�x+e
�x � ex as x! +1.

The set of most rapidly varying subexpressions of u is

 = mrv(u) = mrv(
1

e
�x+e�x � e

x) =
n
e
�x+e�x

; e
x
; e
�x
o
:

Let us choose ! = e
�x+e�x to be the representative of this equivalence class

and let us rewrite e�x in terms of !. According to the rule (3.2) we get, with

f = e
�x and g = e

�x+e�x ,

A = e

�x�(�x+e�x) = e

�e�x
:

However, if we rewrite f = e
�x in terms of Ag1, then f , the expression we

want to eliminate, is reintroduced as a subexpression of A. It seems that this

choice for ! is not very clever. From this observation we will derive a condition

on ! so that the rewritten expression disappears completely and does not get

reintroduced inadvertently.

Let us try next to rewrite the elements in
 in terms of ! = e
�x. The

function ex can simply be rewritten as 1=!. In order to rewrite e�x+e
�x

we

set f = e
�x+e�x and g = ! = e

�x and again apply the rewrite rule with

3.3 The MrvLimit Algorithm 45

A = e
ln f�ln g = e

�x+e�x+x = e
e
�x
:

Note that with this choice of !, f 6� A. If we replace in u every instance of

f by A!1, then we get

u =
1

A!

� 1

!

=

�
1

e
e�x

� 1

�
!
�1 (3.3)

which no longer contains f as a subexpression.

The expression (3.3) can be seen as the series expansion of u in terms of !. This

series, however, is not a proper power series. Although (A) = (1) < (!),

the leading coe�cient 1=A� 1 is in the same comparability class as !, which

can be shown by computing the limit of the quotient of the logarithms of

1=A� 1 and ! (recursively using our algorithm with ! = e
�x):

lim
x!+1

ln j1=A� 1j
ln j!j = lim

x!+1
ln(1� e

�e�x)

�x = lim
x!+1

ln(e�x (1 + O(e�x)))

�x

= lim
x!+1

�x +O(e�x)

�x = 1 2 IR�:

As a consequence, the powers of ! don't necessarily dominate the coe�cients

of the series (3.3). The conclusion, that the limit of u is �1 as x ! +1
according to the negative leading exponent and to the negative sign of the

leading coe�cient is therefore wrong.

The series does not meet the conditions stated in equation (3.1) since

mrv(1=A � 1) = mrv(A) = fe�xg � !:

However, if we rewrite A in terms of ! as well, then we �nally get the series

u =
1

! e
!
� 1

!

= �1 + 1

2
! +O(!2)

and the correct result, which is �1. {

In the above example we met two problems. First, it may happen due to a

unlucky choice of ! that the rewritten expressions recurs inside of A. Fur-

thermore, it is not guaranteed that mrv(A) � ! and thus further rewriting

may be necessary. The source of both problems is that for two expressions in

the mrv-set, one is a subexpression of the other.

In the next lemma we show under which conditions on f and g we can rewrite

f in terms of g such that mrv(A) � g. The problems illustrated above cannot

occur if these conditions are met.

Lemma 3.18 Let u be a function such that x 62
 = mrv(u), let f = e
s and

g = e
t be in
, and let A = e

s�ct with c = lim
x!+1

s

t
. Then

46 3. Algorithm for Computing Limits of exp-log Functions

(mrv(f) = ffg) ^ (mrv(g) = fgg)) mrv(A) � g: (3.4)

Proof. If A is a constant the implication (3.4) obviously holds, so let us

assume that A is an exponential. Furthermore, mrv(f) = ffg and mrv(g) =
fgg holds if and only if mrv(s) � f and mrv(t) � g, and thus the left hand

side of (3.4) implies max(mrv(s);mrv(t)) � g, and we see that

mrv(A) � fAg [mrv(s � ct):

Together with the facts mrv(s � ct) � max(mrv(s);mrv(t)) and A � g

(Lemma 3.16) we can conclude that mrv(A) � g. 2

Note that the other direction does not hold. A counterexample for this is

f = e
x+1=x+e�x and g = e

x+e�x where A = e
1=x and thus mrv(A) � g but

mrv(f) = ff; e�xg and mrv(g) = fg; e�xg. However, a slightly weaker form

for the other direction is proven in the next lemma.

Lemma 3.19 Let u be a function such that x 62
 = mrv(u) and let f = e
s

and g = e
t be in
 and A = e

s�ct with c = lim
s!+1

s

t
. Then

mrv(f) 6= ffg ^mrv(g) = fgg) mrv(A) = mrv(s) � g:

Proof. mrv(f) 6= ffg implies mrv(s) � g and mrv(g) = fgg implies

mrv(t) � g. As a consequence mrv(s � ct) = mrv(s). Equality holds, since

the most rapidly varying subexpressions in s cannot cancel with those in t.

Together with Lemma 3.16 we get mrv(A) = mrv(s). 2

If we rewrite f in terms of g with mrv(f) 6= ffg and mrv(g) = fgg then

mrv(A) = mrv(s) = mrv(f)nffg. This leads to the following strategy for

rewriting all elements in
.

Let ! be an element of the set of all the expressions which do not have a

subexpression in
, i.e. let ! 2
 with mrv(!) = f!g. We can then rewrite

all elements in
 in terms of !. These elements are eliminated one by one.

An element f 2
 which contains a subexpression g 2
 has to be rewritten

before g is rewritten.

Let u0 = u and
i = mrv(ui). Then ui+1 is obtained from ui by rewriting

fi 2
i in terms of !, where fi is chosen such that for all f 2
i with

f 6= fi, fi is not a subexpression of f . This condition on fi is equivalent to

jmrv(fi)j = max
n
jmrv(f)j

���f 2
io which is easily tested in a program.

3.3 The MrvLimit Algorithm 47

According to Lemma 3.18 and Lemma 3.19 we have
i+1 =
inffig [f!g.
Eventually we obtain
n = mrv(un) = f!g for n = j
j and the rewriting of

u is complete.

Up to this point we have discarded the limiting behaviour of ! itself. Thus

if it turns out that ! = e
h ! +1, then we set ! = e

�h and substitute ! by

1=! in un. The following lemma concludes the recent observations.

Lemma 3.20 Let
 = mrv(u) with x 62
. Then we always can rewrite all

elements in
 in terms of ! = e
h where

(1) ! or 1=! 2
 and ! ! 0;

(2) mrv(!) = f!g, which implies that mrv(h) �
.

Example 3.21 In this example we want to compute

lim
x!+1

e
h
e

� x

1+h
e
e
�x+h

h
2

� e
x + x; (3.5)

where h = e
�x=(1+e�x). The set of most rapidly varying subexpressions is

 =
�
e

�x+h
; e

� x

1+h
; h; e

x
; e

�x	
:

We choose ! = e
�x and then rewrite all the elements in
 \from left to right",

namely

f1 = e

�x+h = e

h
!

f2 = e

� x

1+h = e
x�x=(1+h)

!

f3 = h = e
x�x=(1+e�x)

!

f4 = e
x = !

�1

f5 = e
�x = !

and the starting expression is transformed into

u5 =
e
!e
x�x=(1+!)

e
x�x=(1+!ex�x=(1+!))

e
!e
!e
x�x=(1+!)

(ex�x=(1+!))2 !
� 1=! + x:

We now have mrv(u5) = f!g. The series of u5 in ! is

2 + (3=2x2 + 3)! +O(!2)

and the result of (3.5) is 2. In Chapter 8, example (8.18) we will see how some

other computer algebra systems behave on this problem. {

48 3. Algorithm for Computing Limits of exp-log Functions

It is important to note that the exponentialA = e
s�c t must never be expanded

into a product of exponentials, because this would reveal functions of higher

classes, for example es = f � g and e�c t = g
�c � g. mrv(es e�c t) � g and

the important fact that mrv(A) � g would be lost. Termination of the whole

algorithmwould also no longer be guaranteed. Consider, e.g., f = e
�x=(1+1=x),

which might be rewritten as f = Ae
�x with A = e

x�x=(1+1=x). We have

mrv(A) � f , but as soon as A is expanded, we get A = e
x
f and are back at

square one. The argument s� c t of the exponential however can be simpli�ed

without consequences.

3.3.3 Series Expansion

In this section we will prove that the power series in the most rapidly varying

subexpression ! at ! = 0+ always exists, provided that x 62
. The treatment

of the case x 2
 is deferred to the next section. Let us assume that ! is

an exponential and that we have rewritten the set
 of most rapidly varying

expressions according to Lemma 3.20 in terms of !.

Theorem 3.22 Let f be an exp-log function with mrv(f) = f!g, ! ! 0 and

! = e
h with mrv(h) � !. Then the power series of f in ! at ! = 0+ exists

and has the form
P1
i=0 ci!

ei with mrv(ci) � ! and ei 2 C.

Proof. The proof is performed inductively over the expression tree of f . The

conditions are obviously satis�ed if f does not depend on ! or if f = !.

For the induction step we have to show that the sum or the product of two

series s1 and s2 and the exponential, the logarithm and the inverse of a series

s is also a series with coe�cients whose mrv set is in a lower comparability

class than !, provided that the same condition holds for the series s, s1 and

s2.

For the sum and the product of two series it is obvious that the series exists,

since the new coe�cients are built from the coe�cients of the series of the

arguments by means of multiplication and addition only. The condition on

the coe�cients is also preserved since mrv(ab) � max(mrv(a);mrv(b)) and

mrv(a + b) � max(mrv(a);mrv(b)).

Next we consider the case of the series of the inverse of g in the case that the

the series of g in ! exists. Let the latter one be

Series(g; !) = c0 !
e0 + c1 !

e1 + � � � :
The series of the inverse of g is given by

Series(1=g; !) =
1

c0

!
�e0

1X
k=0

(�1)k�k

3.3 The MrvLimit Algorithm 49

where � = c1=c0 !
e1�e0 + c2=c0 !

e2�e0 + � � �. This series exists, provided that

the leading coe�cient c0 6= 0. With the help of the oracle for deciding zero-

equivalence this condition has to be asserted. The condition on the coe�cients

is also preserved since they are also generated from the coe�cients ci and 1=c0
by means of multiplication and addition only and since mrv(1=c0) = mrv(c0).

Next we discuss the series expansion for eg where the series of g exists. The

leading term of the series of g must satisfy e0 � 0. For, if e0 < 0, g would tend

to �1 as ! ! 0, i.e. as x ! +1, and thus mrv(eg) = max(fegg;mrv(g)).
mrv(g) is obviously !, so let us compare eg with ! by computing the limit of

the quotient of their logarithms.

lim
x!+1

g

ln!
= lim
x!+1

lim
!!0+

c0

h

!
e0 +

c1

h

!
e1 + � � � = �1

since mrv(h) � ! according to the hypothesis of the theorem andmrv(ci) � !

according to the induction hypothesis, and we would have eg � !, which is a

contradiction.

If e0 > 0 then the series of eg is given by

Series(eg; !) =

1X
k=0

Series(g; w)k

k!

and the problem is reduced to addition and multiplication of series. For the

case e0 = 0 we get

Series(eg; !) = e
c0

1X
k=0

k

k!

with = c1 !
e1 + c2 !

e2 + � � �. In order to establish the conditions on the

coe�cients we only have to show that mrv(ec0) � !. From limx!+1
g

c0
=

limx!+1 lim!!0+
c0+
c0

= 1 follows that (ec0) = (eg). Furthermore we

know that eg � ! as mrv(f) = f!g, i.e., eg would otherwise have been rewrit-

ten as a power of !. From this and the fact that mrv(ec0) � fec0g[mrv(c0) it
follows that mrv(ec0) � !. Again note, that the condition mrv(ec0) � ! only

holds for the expression ec0 , i.e. this exponential must also not be expanded.

Expanding ec0 may produce functions in higher comparability classes.

The last case is the series of ln g.

Series(ln(g); !) = Series (ln(c0 !
e0 + c1 !

e1 + � � �); !)

= ln c0 + e0 ln! +

1X
k=1

(�1)k�1
�
k

k

Due to the precondition, ln! simpli�es to h and the above is a power series,

provided that c0 6= 0. This latter condition must be asserted again with the

help of the oracle.

50 3. Algorithm for Computing Limits of exp-log Functions

Concerning the condition on the coe�cients of this series we know from the

induction hypothesis that mrv(h) � ! and from the de�nition of the set of the

most rapidly varying subexpressions, it follows that mrv(ln c0) = mrv(c0) �
!, which completes the proof. 2

3.3.4 Moving up in the Asymptotic Scale

In the previous sections we have always postulated that x 62
, because then
all elements in
 are exponentials (cf. Lemma 3.14) which simpli�es both the

rewriting and the series expansion step. Although the di�culties with the

rewriting step for the case that x 2
 could be resolved by setting x = e
ln x,

the real problem is that we are not able to distinguish the comparability

classes below (x). If we apply our algorithm to a function where the compa-

rability classes of all the subexpressions are lower than (x), then the leading

coe�cient of the series in x will always be identical to f . An example is

f = lnx = ln(eln x) where we get the series lnx!0 = f if we would expand it

in terms of ! = e
� ln x. In the following we show how this problem is treated

by our algorithm.

The idea is that we move up one level in the asymptotic scale, i.e., we go from

x to ex. This is based on the following lemma:

Lemma 3.23 Let f(x) and g(x) be two exp-log functions and let lim
x!+1

f(x) =

� and lim
x!+1

g(x) = +1 then

lim
x!+1

f(g(x)) = �:

Proof. The statement follows at once from the theorem on the continuity of

composite continuous functions and from the fact that exp-log functions are

ultimately continuous for x! +1. 2

In our case we choose g(x) = e
x. If we replace x by ex in the given expression

f(x), the limit remains the same. However, if we want to use our algorithm

on the transformed expression, we need to show that the ordering of the

comparability classes is not changed.

Lemma 3.24 Let f(x), g(x) and v(x) be exp-log functions with lim
x!+1

v(x) =

+1. Then,

f(x) � g(x)) f(v(x)) � g(v(x)):

Proof. Since f(x) � g(x) we know that limx!+1
ln f(x)

ln g(x)
= 0. The quotient

ln f(x)

ln g(x)
itself is also an exp-log function, which we name u(x). Since both u(x)

3.3 The MrvLimit Algorithm 51

and v(x) are exp-log functions, with lim
x!1

v(x) =1, we can apply Lemma 3.23

to get

lim
x!+1

lnf(v(x))

lng(v(x))
= lim
x!+1

u(v(x)) = lim
x!+1

u(x) = 0

which is equivalent to f(v(x)) � g(v(x)). 2

If we replace x by ex the expression may be simpli�ed as lnx gets transformed

to ln ex = x. It is not necessary to perform this simpli�cation, as it will be

performed automatically during the series expansion. We would then have

! = e
�x and the series expansion of ln ex = ln(1=!) would become x as well.

We repeat this substitution procedure until we eventually get an expression

fn which contains ex as a subexpression. Then ex 2
n = mrv(fn) and hence

we can apply our algorithm, i.e. we know how to rewrite the elements in
n
(Lemma 3.20) and the power series of fn in ! = e

�x exists (Theorem 3.22),

with coe�cients in a lower comparability class than ex.

Example 3.25 Let

f =
ln(lnx+ ln lnx) � ln lnx

ln(lnx+ ln ln lnx)
lnx

and let us compute lim
x!+1

f(x). mrv(f) = fxg and we move up one level in

the scale. We get

f1 =
ln(x+ lnx)� lnx

ln(x + ln lnx)
x:

Again mrv(f1) = fxg and thus we move up a further level and obtain

f2 =
ln(ex + x)� x

ln(ex + lnx)
e
x
:

Now the most rapidly varying subexpression is mrv(f2) = fexg. We set

! = e
�x and rewrite f2 as

ln(!�1 + x)� x

ln(!�1 + lnx)
!
�1

whose power series at ! = 0+ is

f2 = 1� x
2 + 2 lnx

2x
! +

2x4 + 3 ln(x)x2 + 3 ln(x)2x+ 6 ln(x)2

6x2
!
2 +O(!3):

Thus, lim
x!+1

f = 1. {

52 3. Algorithm for Computing Limits of exp-log Functions

3.4 Proof of Termination

In every iteration step of the algorithm one comparability class is eliminated.

However, due to rewriting and to the series expansions new expressions which

may form new comparability classes may be introduced, and termination is

therefore not obvious. Additionally, the limit procedure is used recursively

to compare two mrv sets and it must be shown, that the algorithm does not

enter into an in�nite loop.

In the next section we will show that the global iteration will terminate pro-

vided that the mrv set can always be computed, i.e. provided that the recur-

sive calls will not lead to an in�nite recursion. The veri�cation of the validity

of this assumption is given in Section 3.4.2.

3.4.1 Global Iteration

In every iteration step of the algorithm, the largest comparability class is

eliminated. To prove that this process is monotone, i.e., that it �nally leads

to an expression whose mrv set is empty, we de�ne the size of an expression

which bounds the number of comparability classes which may ever evolve

during the limit computation process. The size of a function f is an upper

bound the number of iterations which the algorithm will perform at most to

compute the limit of f as well as for the rank of a Hardy �eld which contains

f .

The size of a function f is de�ned to be the cardinality of the set
 which

contains all the possible candidates of mrv expressions and moreover all the

active exponentials and logarithms, i.e. exponentials and logarithms whose

argument depend on x:

Size(f(x)) =
���S(f(x))���:

The de�nition of the set S is similar to the de�nition of the Maple function

indets. Algorithm 3.26 shows how to compute the set S of a given exp-log

function f . This procedure is very similar to Algorithm 3.12 presented on

page 39.

The size of an expression is always integral and nonnegative. If it is zero,

then the expression does not depend on x and is constant. The size of an

expression may therefore be used as a variant function to prove termination

of the global iteration. In every iteration step !, one of the most rapidly

varying subexpressions, is eliminated and cannot appear as a subexpression

of the leading coe�cient which is followed up. As ! is an active exponential,

the size of the leading coe�cient is smaller, provided that the series expansion

3.4 Proof of Termination 53

Algorithm 3.26 Computing S to determine the size of an expression

S(f : exp-log function in x)

if x 6� f ! RETURN(fg)
elif f = x ! RETURN(fxg)
elif f = g � h ! RETURN(S(g) [S(h))
elif f = g + h ! RETURN(S(g) [S(h))
elif f = g

c ! RETURN(S(g))

elif f = ln g ! RETURN(fln gg [S(g))
elif f = e

g ! RETURN(fegg [S(g))
fi

step and all the necessary operations described in the last sections do not

increase the size of the expression. As a consequence, the following three

claims have to be shown:

1. The size of an expression is not increased by the rewriting process.

2. The size of a rewritten function u is not increased by the series expansion,

provided that x 62 mrv(u).

3. When moving up an expression u one level in the scale (if x 2 mrv(u))
and taking the leading coe�cient of the series expansion, the size thereof

is smaller than the size of u.

These three statements are proven in the following three subsections.

3.4.1.1 Rewriting Process

Whenever a set of mrv expressions contains more than one element, all el-

ements can be rewritten in terms of a single one according to Lemma 3.20,

provided that all elements in the mrv set are exponentials. Let f = e
s and

g = e
t be two elements in
 = mrv(ui) with mrv(g) = fgg such that for

all m 2 Snffg, f 6� m. Then f is rewritten as f = A � gc where A = e
s�ct,

c = lim
x!+1

s=t and mrv(A) �
nffg [f!g. If every occurrence of f in ui is

replaced by A � gc, then the exponential f disappears and the size is reduced

by one. On the other hand, the new expression A which is introduced may

increases the size by at most one. As a consequence, the rewriting process

does not increase the size of the whole expression and Size(ui+1) � Size(ui).

More formally, we can state, that if an expression ui contains both f and g,

then their portion in the size of ui is���S(f) [S(g)��� = ���ff; gg [S(s) [S(t)��� = 1 +
���fgg [S(s) [S(t)���;

54 3. Algorithm for Computing Limits of exp-log Functions

since f 6� s and f 6� t. The latter follows from the condition mrv(g) = fgg
which implies mrv(t) � g. If f is replaced by Agc in ui then the portion of

the transformed f and of g in the size of ui+1 becomes���S(A�gc)[S(g)��� = ���S(A)[S(g)��� � ���fA; gg[S(s)[S(t)��� = 1+
���fgg[S(s)[S(t)���;

with equality if A is active. The overall size of an expression containing f and

g cannot be increased due to rewriting f in terms of g.

If A is not an active exponential, rewriting reduces the size of the expres-

sion. For example, when rewriting f = e
2x in terms of g = e

x�1, A becomes

e
2x�2(x�1) = e

2 if the argument is simpli�ed. If the argument is not simpli�ed,

A is active and the size of the transformed expression remains the same.

It is very important to rewrite the elements in
 by an element which is also in

. If the elements would be rewritten by a function of the same comparability

class which does not appear in
, then the size of the expression could increase

and termination would no longer be guaranteed in general. However, the size

of the expression does not grow if it is rewritten in terms of the inverse of

an element in
 which does not appear in
 itself. f = e
h can be rewritten

in terms of its inverse simply as f = 1 � (e�h)�1 and this process does not

change the size of the expression.

3.4.1.2 Series Expansion

When all the elements in
 = mrv(u) have been rewritten in terms of ! =

e
h 2
, where ! tends to zero, then the series of u in terms of ! is computed.

The leading coe�cient is the new expression potentially to be followed up.

We show next that the size of the series of u in terms of ! is not greater than

that of u. This implies that the size of the leading coe�cient is smaller, as !

itself does not appear as a subexpression of it.

The size of a series is de�ned to be the size of the (possibly in�nite) set of

terms, i.e.

Size

 1X
i=0

ci !
ei

!
=

�����
1[
i=0

S(ci) [S(!)
����� :

According to this de�nition the size of the series of a constant is larger than

that one of the constant itself. Thus, for our analysis, we consider every

constant c as the expression c �!0. This approach does not change the overall

size of u as ! already appears as a subexpression of u.

We will show that Size(Series(u; !)) � Size(u) by induction over the expression

tree of u. To begin, ! and every constant c � !0 is by itself a series whose size

is equal to the size of the expanded function.

For the arithmetic operations between two functions g1 and g2 we have to

show, that

3.4 Proof of Termination 55

Size(Series(g1; !)) � Size(g1) ^ Size(Series(g2; !)) � Size(g2)

) Size(Series(g1 ? g2; !)) � Size(g1 ? g2)

where ? stands for addition or multiplication. This however follows from our

de�nition of S as the coe�cients of a sum or a product of two series are

constructed from the old coe�cients by means of addition and multiplication

only. Note that the size of the series can indeed get smaller if, e.g., terms in

a sum cancel out.

Let us assume that the series of the expression g is

Series(g; !) = c0 !
e0 + c1 !

e1 + � � �
and that Size(Series(g; !)) � Size(g). To complete the induction step, we need

to show that

Size(Series(f(g); !)) � Size(f(g))

holds for f being the inverse, the exponential and the logarithm. We mark

the use of the induction hypothesis with (I).

As we have seen in Section 3.3.3, the series of the inverse of g has the form

1=g =
1

c0

!
�e0

1X
k=0

(�1)k �k

where � = c1=c0 !
e1�e0+c2=c0 !

e2�e0+� � �, and we see that only multiplication

and addition of series are used to compute the inverse; hence the size of the

resulting series will not be larger than the size of the series of g. More formally,

we get

Size(Series(1=g; !)) = Size

1

c0

!
�e0

1X
k=0

(�1)k �k
!

=
���S(c0) [S(!) [S(�)���

=

�����
1[
i=0

S(ci) [S(!)
����� = Size(Series(g; !))

(I)

� Size(g) = Size(1=g)

which proves this case.

As we have seen in the proof of Theorem 3.22, the series of the argument of

an exponential must start with a leading term whose exponent is positive or

zero. The series of the exponential can thus be written as

exp(g) = exp(c0 + c1 !
e1 + c2 !

e2 + � � �)
= exp(c0) exp(c1 !

e1 + c2 !
e2 + � � �)

= exp(c0)

1X
k=0

k

k!
;

56 3. Algorithm for Computing Limits of exp-log Functions

where = c1 !
e1+c2 !

e2+ � � � and where c0 may be 0. If x � c0 then we have

Size(Series(exp(g); !)) = Size

exp(c0)

1X
k=0

k

k!

!

=
���S(exp(c0)) [S()���

= 1 +
���(S(c0) [S())nfexp(c0)g���

� 1 +

�����
1[
i=0

S(ci) [S(!)
����� = 1 + Size(Series(g; !))

(I)

� 1 + Size(g) = Size(exp(g))

which completes the proof of this case. Otherwise, if x 6� c0 we have

Size(Series(exp(g); !)) = Size

exp(c0)

1X
k=0

k

k!

!

=
���S()��� =

�����
1[
i=1

S(ci) [S(!)
�����

= Size(Series(g; !))

(I)

� Size(g) < Size(exp(g)):

Note that the size of the series is even smaller than the size of the expanded

function in this case.

Example 3.27 Consider the function f = e
�x+e�x e�x ln x

whose size is

Size(f) =
���ff; e�x; e�x ln x

; lnx; xg
��� = 5:

mrv(f) = fe�x ln xg and the series of f in ! = e
�x ln x is

Series(f; !) = e
�x +

�
e
�x�2

! +
1

2

�
e
�x�3

!
2 +

1

6

�
e
�x�4

!
3 + � � �

and the size of this series is jfe�x; !; lnx; xgj = 4. In this example the size of

the series gets reduced although x � c0. The reason is that the new leading

coe�cient ec0 has already appeared as a subexpression of f . The size of

the leading coe�cient e�x is two in this case as the expression lnx gets also

eliminated together with the most rapidly varying subexpression !. {

The series of the logarithm of a series has the form

ln(g) = ln(c0) + e0 ln! +

1X
k=1

(�1)k�1
�
k

k

;

3.4 Proof of Termination 57

where � is de�ned as above. At �rst sight, two new expressions appear in this

series which potentially increase the size, namely ln c0 and ln!. The rest can

again be reduced to multiplication and addition of series. Since ! = e
h is an

exponential (whose argument is real), ln! can be replaced by h and so this

logarithm disappears. Note that S(h) � S(!). If c0 depends on x, we have

Size(Series(ln(g); !)) = Size

ln(c0) + e0 ln! +

1X
k=1

(�1)k�1
�
k

k

!

=
���S(ln(c0)) [S(e0) [S(h) [S(�)���

= 1 +

�����
 1[
i=0

S(ci) [S(!)
!
nfln(c0)g

�����
� 1 +

�����
1[
i=0

S(ci) [S(!)
����� = 1 + Size(Series(g; !))

(I)

� 1 + Size(g) = Size(ln(g));

otherwise, the size of ln c0 is zero and we obtain

Size(Series(ln(g); !)) =

�����
1[
i=0

S(ci) [S(!) [S(ln !)
�����

= Size(Series(g; !))

(I)

� Size(g) < Size(ln g)

and again the size of an expression gets smaller when expanded as a series in

!.

3.4.1.3 Moving Up in the Scale

If x 2
 = mrv(u) then we move up one level in the scale and continue

to work with u1, which is obtained from u by replacing x through ex. This

process increases the size of u by at most one and by exactly one if no sim-

pli�cations are performed, e.g., if ln ex is not simpli�ed to x. Let us assume

that Size(u1) = Size(u)+ 1. Then ex 2 mrv(u1) and we can proceed with the

algorithm as usual. We will show that the size of the leading coe�cient c0 of

the series of u1 in terms of ! = e
�x is smaller than that of u.

Let us �rst assume that u does not contain any active logarithm. Then

mrv(u) = fxg and the series of u1 in ! = e
�x can be computed directly,

as the arguments of all exponentials which are going to be expanded have to

tend to zero and no logarithms ever have to be expanded. The coe�cients

will be constants whose size is zero and the size of the leading coe�cient is

thus smaller than that of u.

If u does contain active logarithms, then we can show that the size of the

series of u1 is smaller than the size of u1. As the size of a function does

58 3. Algorithm for Computing Limits of exp-log Functions

not get increased by series expansion as we have seen in Section 3.4.1.2, it is

enough to show that at least at one point during the series expansion the size

gets reduced. We claim that at least one active logarithm is eliminated when

expanding u1 in terms of !, from which the result follows.

Let us look at an active logarithm ln g in u whose argument does not con-

tain further active logarithms. What can its argument g look like? It

cannot contain active logarithms, and it also cannot contain an exponen-

tial whose argument goes to �1, because this exponential would have to

contain further active logarithms since x 2 mrv(u). Consequently, simi-

larly to the �rst case above, g can be expanded into a series whose coe�-

cients do not depend on x. The size of the leading coe�cient of this series

of g is thus zero and according to the logarithmic case in Section 3.4.1.2,

Size(Series(ln g; !)) < Size(lng). Since subsequent series expansions do not

increase the size of their argument, Size(Series(u1; !)) < Size(u1) and as a

consequence Size(Series(u1; !)) � Size(u). The size of the leading coe�cient

of the series of u1 in ! is therefore smaller than that of u, which completes

the proof.

3.4.2 Recursive Calls

In the previous section we have seen that the global iteration terminates,

provided that the computation of the mrv sets can always be performed.

The procedure which determines the mrv set of a given function u needs

to compute limits to compare two subexpressions. Furthermore, once the

set of most rapidly varying subexpressions has been determined, its elements

must be rewritten. In this rewriting step we have to compute the limit of

the quotient of their logarithms. It is the task of this section to show that

these recursive calls do not lead to in�nite recursions. We will show that the

size of the arguments of these subsequent limit calls is smaller than the size

of the function u whose limit is currently being computed. We use the same

de�nition for the size of a function as in the last section. The chain of recursive

limit calls must terminate, when the size of the argument is zero, as then the

expression passed to limit is a constant.

From Lemma 3.14 we know that the candidates to be compared are always

exponentials or equal to x and that the comparison is done by computing

the limit of the quotient of the logarithms of the two candidates. Let f � u

and g � u be two subexpressions of u which have to be compared, then the

following three cases may be distinguished:

(1) f = x and g = x

(2) f = e
s and g = e

t

(3) f = e
s and g = x.

3.4 Proof of Termination 59

In the �rst case nothing needs to be done as f and g are in the same compa-

rability class.

Let us consider the second case where both f and g are exponentials. The

logarithms of f and g can be simpli�ed to s and t, respectively, and we get

Size

�
ln f

ln g

�
= Size

�
s

t

�
=
���S(s) [S(t)���

<

���fes; etg [S(s) [S(t)��� = ���S(es) [S(et)��� � Size(u):

The �rst inequality holds since es � t and et � s would imply es � s which

is a contradiction. Note that whenever an exponential is compared with the

most rapidly varying subexpression of its argument, then we have f � g or

g � f and thus es � t or et � s. In this case however the above inequality

also holds and the size of the quotient of the logarithms of f and g is smaller

than the size of u.

Let us now look at the third case, which turns out to be the most di�cult

one. To compare f = e
s and g = x we must compute lim

x!+1
s= ln(x). The size

of s= ln(x) is clearly smaller than the size of u if ln(x) � s, since then we get

Size

�
ln f

lng

�
= Size

�
s

lnx

�
= Size(s) < Size(es) � Size(u):

Otherwise, if ln(x) 6� s, the size of the argument passed to limit is equal to

the size of f , which, in turn, may be equal to the size of u, i.e.,

Size
�
s

lnx

�
=
���S(s) [flnxg��� = 1 + Size(s) = Size(es) � Size(u):

Let us investigate what happens when we compute the limit of s= lnx. First

mrv(s= ln x) is determined. mrv(ln x) = fxg and so mrv(s= lnx) = mrv(s)

and thus only mrv(s) needs to be computed. This computation however does

not pose further problems, since

Size(s) < Size(es) � Size(u):

Let us �rst assume that x 62 mrv(s). Then ! 2 mrv(s) is an exponential and

the series of s= ln(x) in ! can be computed. According to Section 3.4.1.2 the

size of the leading coe�cient of this series is smaller than the size of s= lnx and

so also smaller than the size of u. It may thus be processed further without

problems if necessary.

If, on the other hand, x 2 mrv(s(x)), then we must move up one level in

the scale and compute the limit of s(ex)=x. We have already shown that the

size of the leading coe�cient of the series of s(ex)=x in ! is smaller than that

of s= ln(x), provided that the mrv sets of s(ex)=x can be computed. This

computation might, however, lead to an in�nite recursion. As an example

60 3. Algorithm for Computing Limits of exp-log Functions

consider the computation of mrv(ex). According to Algorithm 3.12 we �rst

have to compare ex with mrv(x) = fxg which is a comparison of type (3)

with s = x. Since lnx 6� s we determine mrv(s) = fxg and have to move up

one level and end up with the function ex=x. Computing the mrv set thereof

requires the determination of mrv(ex) �rst and we are in a loop.

However, we do not have to compute the mrv set if we move up one level.

We can rather derive it directly from mrv(t) by simply moving it up as well.

As x 2 mrv(s), the elements in mrv(s(ex)=x) can be rewritten in terms of

! = e
�x. Rewriting of the elements in mrv(s(ex)=x) requires further limit

calls, but now all elements of the mrv set are exponentials. Furthermore, as

ln(x) 6� s,

Size(s(ex)=x) = 1 + Size(s(x)) = Size

�
s(x)

lnx

�
� Size(u):

As a consequence the size of the arguments for those limit calls in the rewriting

step (which are of type (2)) are smaller than Size(u) and do not lead to further

problems. The size of the leading coe�cient of the series expansion of s(ex)=x

in terms of ! is smaller than that of s(ex)=x and hence smaller than the size

of u. Therefore, it can also be processed by further iterations if necessary

without problems.

3.5 A Complete Example

In the previous sections our examples have demonstrated single aspects of the

algorithm, but in this section we want to go through a complete example. We

compute the limit of

f = ln ln
�
xe
xe
x

+ 1
�
� exp exp

�
ln lnx+

1

x

�

for x! +1. The example is taken from [64].

In a �rst step we have to determine the set of most rapidly varying subexpres-

sions of f . For the �rst term this means computing the mrv set of xexe
x

.

mrv(x) = fxg, and in order to compute mrv(exe
x

) we �rst have to de-

termine the limiting behavior of xex. To compute mrv(xex) we compare

x and e
x, that is we compute the limit of lnx=x. This limit is 0 and so

e
x � x. As a consequence mrv(ex) = fexg, mrv(xex) = fexg, xex ! 1 and

mrv(exe
x

) = fexexg. Finally we have to compare x and exe
x

. The quotient

of the logarithms of the two is ln(x)=(xex) = ln x
x
e
�x and tends to 0. Thus

e
xe
x � x and mrv

�
ln ln

�
xe
xe
x

+ 1
��

=
�
e
xe
x	
.

Let us now turn to the second term of f . The argument of the inner exponen-

tial of the second term tends to in�nity and so we compare exp(ln lnx+ 1=x)

with mrv(ln lnx+1=x) = fxg. The mrv set of the quotient of the logarithms

3.5 A Complete Example 61

of the two is fxg and we expand this quotient into a series in terms of ! = e
�x

after having moved up one level:

ln lnx+ 1=x

lnx
;

lnx+ !

x

=
lnx

x

+
1

x

!:

The leading coe�cient of this series tends to zero and thus x � e
ln ln x+1=x and

mrv(exp(ln lnx + 1=x)) = fxg. For the outer exponential we therefore have

to compare exp exp(ln lnx+ 1=x) with x. Again, x is in the mrv set of the

quotient of the logarithms and we move up one level and compute the series

in terms of ! = e
�x:

exp
�
ln lnx+ 1

x

�
lnx

;
exp(lnx+ !)

x

= 1 + ! +
1

2
!

2 +O(!3);

which shows that exp exp(ln lnx+ 1=x) � x.

At this point our algorithm has determined that mrv(f) = e
xe
x

and it has

derived the following order on the subexpressions of f :

e
xe
x � e

x � fx; exp exp(ln lnx+ 1=x)g � exp(ln lnx+ 1=x): (3.6)

Now we can start eliminating comparability classes. The size of f is 9, so at

most 9 iterations are necessary. We �rst expand f in terms of !1 = e
�xex and

get

ln ln
�
x!

�1
1 + 1

�� exp exp (ln lnx+ 1=x) =�
ln(lnx+ xe

x)� exp exp (ln lnx+ 1=x)
�
+

1

x(lnx+ xe
x)
!1 +O

�
!1

2
�
:

Since the leading exponent is zero we continue with the leading coe�cient

whose size is 7. (It is left as an exercise to the reader to �gure out why the size

got reduced by 2.) According to the information available in relation (3.6), the

most rapidly varying subexpression of ln(lnx+ xe
x)� exp exp (ln lnx+ 1=x)

is ex and we set !2 = e
�x. For the series we get

ln(lnx+ x!

�1
2) � exp exp (ln lnx+ 1=x)

=
�
lnx+ x� exp exp (ln lnx+ 1=x)

�
+

lnx

x

!2 +O

�
!2

2
�
:

The size of this series is 6 and thus the size of the leading coe�cient is 5. We

could now directly expand the leading coe�cient into a series in x to get the

result, but let us strictly follow the rules of the algorithm. As the mrv set

of the leading coe�cient is fx; exp exp (ln lnx+ 1=x)g we move up one level.

The leading coe�cient becomes

x+ e
x � exp exp

�
lnx+ e

�x�

62 3. Algorithm for Computing Limits of exp-log Functions

and the mrv set becomes fex; exp(exp(lnx + e
�x))g. We set !3 = e

�x and

rewrite the second exponential in the mrv set in terms of !3 (the limit of the

quotient of the logarithms of the two has already been computed). The series

of the transformed expression in !3 is

x+ !
�1
3 � exp(exp(lnx+ !3)� x)!�1

3 = �
�
x

2
+
x
2

2

�
!3 + O(!3

2):

As the leading exponent of the series is positive, the limit of f for x ! +1
is 0.

With the above approximation we also found an asymptotic approximation

for f at x =1:

f � � ln2 x

2x
+O

�
lnx

x

�
:

In Chapter 6 we will look at this application of our algorithm in more detail.

4. Related Work

In this chapter we compare our algorithm with two other approaches which

have been proposed in the literature. First we will discuss the nested forms

and nested expansions which have been proposed by Shackell [78]. A nested

form is just another form of writing a function which corresponds to the �rst

term of an asymptotic series. This form allows one to read o� the limit eas-

ily. The algorithm to convert a function into its nested form is a bottom

up algorithm. A given function is converted recursively into a normal form.

Since cancellations may occur during this normalization process, all informa-

tion about the function must always be kept available. If cancellation occurs,

then the right scale of expansion is found with the help of the zero equiva-

lence oracle. The oracle is applied to the function which is obtained by setting

all subexpressions which are in a larger comparability class than the poten-

tial scale of expansion to zero. The normal form is de�ned such that this

substitution is always possible.

Secondly, we briey discuss the ghost and shadow approach also introduced

by Shackell in [83]. This algorithm is based on the same ideas as the nested

form algorithm. Instead of replacing subexpressions with zero, projection onto

a shadow �eld is used. This method is also based on the idea of asymptotic

series expansion. A function is expanded into its asymptotic T expansion

where T contains all the di�erent comparability classes.

4.1 Nested Forms

The nested form of a function is a normal form for elements in a Hardy �eld

which either tend to in�nity or to zero. Nested forms have been introduced

by Shackell in [78]. When he was implementing an algorithm for computing

asymptotic approximations in Miranda [52] using a generalized power series

approach he encountered the cancellation problem. His answers were �rst

estimate forms [77] which he subsequently replaced by the nested forms. For

an overview article on nested forms we refer to [80]. The following de�nition

is a minor variant of Shackell's. The notation lk is used for the k-th iterated

logarithm and ek for the k-th iterated exponential.

64 4. Related Work

De�nition 4.1 (Nested Form) Let F be a Hardy �eld and let � be a

positive element in F . A nested form for � is a �nite sequence f("i, si, mi,

di, �i), i = 1, : : :, kg of k elements, k � 0, which has the following properties:

(a) For each i, "i 2 f�1; 1g; si and mi are non-negative integers, di is a

non-zero real number and �i is another element of a Hardy �eld;

(b) � = �0 and for i = 1; : : : ; k : �i�1 = e
"i
si
(lmi (x)

di
�i);

(c) �i � lmi
(x) for i = 1; : : : ; k;

(d) �k tends to a positive constant, i.e. �k = c+ � with c > 0 and � ! 0 as

x! +1;

(e) 8i : 1 � i � k : di > 0 _ si = 0;

(f) 8i : 1 � i � k : si = 0) "i = 1;

(g) dk 6= 1 or sk = 0 or mk = 0.

Condition (e) implies that the argument of the exponential always tends to

in�nity. Condition (g) can be motivated by the fact that in the case that

dk = 1 and sk > 0 and mk > 0 the expression

�k�1 = e
"k
sk
(lmk (x)�k) = e

"k
sk
(lmk (x)(c+ �))

can be converted to

e

"k

sk�1

�
lmk�1(x)

c
e1(lmk (x) �)

�
where of course exp(lmk (x) �) must be written as a nested form. Condition

(c) is satis�ed for the above nested form as

lim
x!+1

ln(e1(lmk (x) �))

ln(lmk�1(x)
c
)

= lim
x!+1

lmk (x) �

c lmk (x)
= lim
x!+1

�

c

= 0:

Up to the representation of �k, the nested form of a function is unique. Once

a function f has been converted into nested form, its limit is apparent. If

k = 0 then the limit is c, and if s1 > 0 and "1 = 1 or s1 = 0 and d1 > 0 then

the limit is +1, otherwise the limit is zero.

A nested expansion for a function f 2 F is a sequence of nested forms nj
so that n1 is a nested form for f and if nj = f("ji; sji;mji; dji; �ji); i =

1; : : : ; kjg, j � 1, then nj+1 is a nested form for j�j;kj � lim�j;kj j. The

�nite partial expansions fn1; : : : ; njg give successively �ner estimates of the

asymptotic growth of f in the same way as the partial sums of an asymptotic

expansion do.

For example, the nested form of the function f = ln(� (� (x)))=ex is

4.1 Nested Forms 65

n
(1; 1; 0; 1; �11); (1; 0; 1; 1; �12)

o
where �12 = 1� �1. Rewritten in usual mathematical notation we obtain

ln(� (� (x)))

e
x

= e
1
1

�
x e

1
0

�
lnx f1� �1g

��
= e

x ln x (1��1)
:

The limit of ln(� (� (x)))=ex is +1 as s1 = 1 and "1 = 1. The next term

of the nested expansion of f is f(1; 0; 1;�1; �21)g, i.e. �1 = ln�1(x)�21 with

�21 = 2 � �2, and so on. We will see this example once more in the next

chapter as Example 5.5 where we show, how an extension of our algorithm

handles this problem.

In [78] it has been proven that f has a nested expansion if it belongs to a

Rosenlicht �eld F . Additionally, the existence of a nested form implies that

the computation of a nested form for f 2 F is Turing reducible to the problem

of computing limits in F . This seems somewhat surprising since a nested form

contains much more information than a limit.

Lemma 4.2 Let F be a Rosenlicht �eld and let us assume that we have an

oracle which determines the limit at +1 for any element f 2 F . The nested
form of a function f 2 F can then be computed if it exists by performing

arithmetic in F and consulting the oracle only.

Proof. If the limit of f is �nite and non zero (which can be checked using

the oracle), the nested form of f is simply limf + (f � limf). Otherwise the

nested form of f has the form

f = �e

"

s

�
lm(x)

d
�

�
with lm(x) � �, s;m 2 IN, d 2 IR� and " 2 f1;�1g and where � is the sign

of f . Let us further assume that �(f) < 0 which can be tested using the limit

oracle. If �(f) > 0 then we �rst determine the nested form of f�1 and derive

the nested form for f by adjusting " and d. As � holds the sign of f we assume

further that f > 0.

Since f > 0 and �(f) < 0 which implies " = 1 we can write

ls(f) = lm(x)
d
�

ls+1(f) = d lm+1(x) + ln�

ls+1(f)

lm+1(x)
= d+

ln�

lm+1(x)
:

As � � lm(x) it follows that

d(s;m) = lim
x!+1

ls+1(f)

lm+1(x)
= d 2 IR�: (4.1)

66 4. Related Work

In other words, we have to determine integer parameters s and m so that (4.1)

is satis�ed. One could search for such parameters systematically using a Can-

tor enumeration of IN2, however a more e�cient algorithm can be formulated.

From the de�nition of d(s;m) follows that

d(s;m) = 0) d(t;m) = 0 8 t > s and d(s; n) = 0 8 n < m

d(s;m) =1) d(s; n) =1 8 n > m and d(t;m) =1 8 t < s:

Thus, if we look for s andm in the range s � s0 andm � m0 and if d(s0;m0) =

0 then the search can be restricted to s � s0 and m > m0; if d(s0;m0) = 1
then s > s0 and m � m0 is implied; and if �nally d(s0;m0) 2 IR� we are done.
Algorithm 4.3 performs this search for an expression f which tends to 1.

Algorithm 4.3 Computing the nested form of f 2 F

NestedForm(f) =

s := 0; lsf := f ; m := 0; lmx := x;

flsf = ls(f) and lmx = lm(x)g
d := lim

x!+1
ln lsf
ln lmx

while d =1 or d = 0 do

if d =1 ! s := s+ 1; lsf := ln(lsf)

elif d = 0 ! m := m+ 1; lmx := ln(lmx)

fi

d := lim
x!1

ln lsf
ln lmx

od

fd 2 IR�g

The existence of a nested form for f implies that Algorithm 4.3 terminates.

For computing the parameters s and m, s+m+1 inquiries of the limit oracle

are necessary. To get the nested form of f Algorithm 4.3 has to be applied

recursively to ls(f)=lm(x)
d until an expression is obtained whose limit is �nite

and non-zero. 2

A direct implementation to compute nested forms for exp-log functions can

be derived from the algorithm described in [77] which computes the estimate

form of a function. An estimate form is also a normal form for functions

which is not as powerful as nested forms but similar enough to allow us to

easily adapt the algorithm. We have successfully implemented this algorithm

in Maple. We will �rst recall the basic ideas and steps of this algorithm and

then compare it with our algorithm from the point of view of practicability

for computing limits.

4.1 Nested Forms 67

4.1.1 Algorithm for Computing Nested Forms

The basic idea of the algorithm presented in [77] is that the expression tree of

the function is converted into a nested form from the bottom to the top. At

the leaves of the expression tree we have constants which are already in nested

form and the unknown x, whose nested form is f(1; 0; 0; 1;1)g. Furthermore,

algorithms to compute the nested form of the exponential, the logarithm and

the inverse of a nested form are given as well as algorithms to compute the

nested form of the sum and the product of two nested forms.

Expressions which tend to zero play a special role in this algorithm and are

called z-sums. For example � is a z-sum in �k = c + �. A z-sum is a sum

of z-prods, and a z-prod is a product of z-terms. A z-term is either a nested

form which tends to zero, e.g., a nested form with " < 0, or a z-function. A

z-function is a function which tends to zero and which is applied to arguments

which also tend to zero. For exp-log functions we have z-functions which

encode the shifted exponential function at x = 0, the logarithm at x = 1 and

a shifted inverse at x = 1.1 There are also z-functions which represent the tail

of the series expansion of a z-function.

zexp0(x) = e
x � 1; zexp

n
(x) = 1

x

�
zexp

n�1(x) � x

n!

�
zlog0(x) = ln(1 + x); zlogn(x) = 1

x

�
zlogn�1(x)� x

n

�
zinv0(x) = 1� 1

1+x
; zinvn(x) = 1

x

�
zinvn�1(x)� x

� (4.2)

for n > 0.

The basic operation which is used in order to perform the arithmetic opera-

tions on nested forms is the conversion of a z-sum Z into a nested form. This

process is called z-expansion and is done, roughly speaking, by expanding the

z-sum into a series and by taking the leading term as a new nested form.

The crucial point however is that this expansion has to be performed in the

right asymptotic scale due to the cancellation problem. As a consequence the

comparability classes of all the nested form-like z-terms2 which appear in Z

are determined and ordered in a �rst step. If there are several z-terms which

are in the same comparability class, then Z has to be rewritten.

Once the comparability classes of all z-terms have been determined and are

all distinct, the correct comparability class to perform the expansion is de-

termined. Let us assume that the comparability classes of the z-terms are

!1 � !2 � � � � � !r . Zk is de�ned to be the expression being obtained from Z

by replacing all z-prods which are in a higher comparability class than !k by

zero, and in particular Z = Zr . Due to the special form of the z-terms, this

1Additional z-functionsmust be added if the �eld of functions is extended, e.g. a function
zsin(x) = sin(x) and zcos(x) = cos(x)� 1 (cf. [75]).

2For a precise de�nition we refer to [80] where the set of nested form-like terms is called
the set V (Z).

68 4. Related Work

substitution is always possible. In order to �nd the right comparability class

in which the series expansion has to be performed, we go through the expres-

sions Z1; Z2; : : : and determine whether they are zero or not using the oracle

for deciding zero equivalence. If Zk is zero, then we know that some positive

powers of any !i with i > k must appear in the asymptotic expansion of Z, as

Z itself is not identically zero. Let k be the smallest index such that Zk 6= 0,

then the series can be computed in terms of v = !k and no cancellations will

appear.

Furthermore, if a z-function f(x+y) is to be expanded in terms of v then it may

happen that x only depends on z-terms which are in a smaller comparability

class than v and that y contains a positive power of v. In order to be able to

apply the expansion rules (4.2) to compute the power series of f , the function

must be expanded, i.e. the x and the y term of f(x + y) must be separated.

Special expansion rules are given in [77, Lemma 23].

Once this separation has been done, the z-functions which contain a positive

power of v in their argument can be expanded using the expansion rules (4.2).

The leading term of a z-function with index n�1 is obtained if it is expressed

in terms of the z-functions with index n. Eventually Z can be written as

Z = v
rfH + �g with � ! 0. In a similar way, H can be expanded and �nally

Z will be transformed into Z = v

r1

1 v

r2

2 � � �vrmm fc + �g where c is a nonzero

�nite constant, � is a z-sum and v1 � v2 � � � � � vm. This form for Z can be

converted into a nested form by multiplying the nested forms vri
i

and c + �

together.

4.1.2 Comparison

The main di�erence between the algorithm to compute a nested form and our

algorithm is that in Shackell's approach no terms of any series approximation

can ever be discarded. The remaining higher order terms of any series ap-

proximation always have to be retained. The reason for this is that Shackell's

algorithm operates on the expression tree of a given function recursively from

the leaves up to the root. In order to be able to resolve cancellation problems

at higher levels in the expression tree all the information for every subexpres-

sion must be available. No information can ever be neglected in this approach.

As a consequence the nested forms tend to become bigger and bigger during

the recursive process and this is a signi�cant disadvantage. Our algorithm,

however, can discard the tail of every series expansion as it only needs the

leading term. The information which is stored in the tail of the series expan-

sion is no longer needed (in order to determine the limit). As a consequence

the size of the expression tends to get smaller at every step, a characteristic

we could use to prove termination.

3There is a typographic error in the expansion rule for zinvn(x+ y). The term Un(x; y)
must be added and not subtracted.

4.1 Nested Forms 69

To illustrate this point let us look at the size of the nested form of

e
e
x

=e
e
x�e�e

e
x

;

which turns out to be 1 + � where � is the following z-term:

zexp0

�
e

�1
3

�
x

n
1 + �1 + zlog0

�
e

�1
1 (xf1 + �1g) � zlog0

�� zlog0(zexp1(�e�1
3 (x))) e�1

2 (xf1 + �1g)
�
x
�1

�o��

with

�1 =
zlog0(zlog0(�x e�1

2 (x))e�1
1 (x))

x

:

Computing the limit of a function using the nested form approach provides a

typical example of an algorithmwhich su�ers from the problem of intermediate

expression swell as the size of the result we �nally are interested in, namely the

limit of the function, is very small. This problem is one of the most serious

problems computer algebra algorithms can encounter and should whenever

possible be avoided.

Another problem which aggravates this situation is the problem of sim-

plifying z-sums. Once a z-function has been expanded to order n it is

very expensive to �gure out whether it can be combined together with

other terms into an expansion of smaller order. As the complexity of such

a simpli�cation step is exponential to the size of the expression, it can-

not be done in practice, and as a consequence the expressions get larger

than they have to be. Consider the computation of the nested form for

e
1=x � (e1=x � 1)=(e1=x). The algorithm proceeds as follows: First the

nested forms of the numerator and the denominator of the quotient are de-

termined, i.e. e1=x � 1 = x
�1f1 + zexp1(1=x)g and e

1=x = 1 + zexp0(1=x).

The inverse of the latter is 1 � zinv0(zexp0(1=x)) and the quotient becomes

x
�1f1+zexp1(1=x)�zinv0(zexp0(1=x))�zexp1(1=x) zinv0(zexp0(1=x))gwhich

tends to zero. Thus the nested form of e1=x � (e1=x � 1)=(e1=x) is

1 + zexp0
�
1
x

�� 1
x
� zexp1(1

x
)

x
+

zinv0(zexp0(1x))
x

+
zexp1(1x) zinv0(zexp0(

1
x
))

x
:

(4.3)

If the function �rst is normalized however, then another, more complicated

nested form results. We compare the two nested forms with aMaple package

we implemented to compute nested forms. The implementation follows the

description in [77] and was adjusted to nested forms where necessary. L(n)

denotes the n times iterated logarithm, i.e. L(0) = x, and NF(0; c; �) denotes

c+ �.

> e := exp(1/x)-(exp(1/x)-1)/(exp(1/x)):

> JSnestform[Input](e);

70 4. Related Work

NF

�
0; 1;� 1

L(0)
+

zinv0

�
zexp0

�
1

L(0)

��
L(0)

� zexp1

�
1

L(0)

�
L(0)

+
zexp1

�
1

L(0)

�
zinv0

�
zexp0

�
1

L(0)

��
L(0)

+ zexp0

�
1

L(0)

��

> JSnestform[Input](normal(e));

NF

�
0; 1;� zinv0

�
zexp0

�
1

L(0)

��
+ 1

L(0)
+ 2

zexp1

�
2

L(0)

�
L(0)

� zexp1

�
1

L(0)

�
L(0)

� zinv0

�
zexp0

�
1

L(0)

��
L(0)

� 2
zinv0

�
zexp0

�
1

L(0)

��
zexp1

�
2

L(0)

�
L(0)

+
zinv0

�
zexp0

�
1

L(0)

��
zexp1

�
1

L(0)

�
L(0)

�

A sequence of transformations can be applied to equation (4.3) to see that the

two representations are indeed equivalent. However, the point is that such

a simpli�cation is di�cult to perform automatically. Remember, that nested

forms are only unique up to the representation of the z-sum � in �k.

As z-sums are di�cult to simplify, it may happen that zeros remain unsim-

pli�ed as huge expressions. If such a zero appears inside another expression,

there can be little chance to detect and remove it. The treatment of these

hidden zeros implies a lot of unnecessary work. Consider again the above

example. The function SAdd adds, and the function SSubtract subtracts two

nested forms. L(n) stands for the n-times iterated logarithm.

> JSnestform[SSubtract](

> JSnestform[SAdd](JSnestform[Input](1+1/x),""),

> ");

NF

�
0; 1; 2

zinv0

�
zexp0

�
1

L(0)

��
L(0)

+ zinv0

�
zexp0

�
1

L(0)

��
+zexp0

�
1

L(0)

�
� 1

L(0)
� 2

L(0)
+ 2

zinv0

�
zexp0

�
1

L(0)

��
zexp1

�
2

L(0)

�
L(0)

�

> normal(JSnestform[Output]("), expanded);

x+ 1

x

> JSnestform[Input](");

NF

�
0; 1;

1

L(0)

�

We see that the �rst result contains a large hidden zero, but as long as it does

not appear as an isolated term, the zero equivalence oracle cannot be applied.

Such hidden zeros slow down the Z-expansion.

The representation of the z-sums also depend on the order the terms of a sum

are summed up, and it is not possible to decide easily which order will return

4.1 Nested Forms 71

the simplest representation. Consider the normalized form of our example

function:

(e1=x)
2 � e

1=x + 1

e
1=x

:

Once the terms of the sum of the numerator have been converted to nested

forms, they can be summed up in three di�erent ways:

> JSnestform[SAdd](JSnestform[Input](exp(1/x)^2),

> JSnestform[Input](-exp(1/x)+1));

NF

�
0; 1;� 1

L(0)
� zexp1

�
1

L(0)

�
L(0)

+ zexp0

�
2

L(0)

��

> JSnestform[SAdd](JSnestform[Input](-exp(1/x)),

> JSnestform[Input](exp(1/x)^2+1));

NF

�
0; 1; zexp0

�
2

L(0)

�
� zexp0

�
1

L(0)

��

> JSnestform[SAdd](JSnestform[Input](1),

> JSnestform[Input](exp(1/x)^2-exp(1/x)));

NF

�
0; 1; 1

L(0)
+ 2

zexp1

�
2

L(0)

�
L(0)

� zexp1

�
1

L(0)

�
L(0)

�

In some cases the z-functions got expanded to a certain degree, in others they

did not get expanded. Note also, that for the �rst and the last ordering a Z-

expansion is computed, while for the second order no Z-expansion is necessary.

Note, that a normalization of the input does not necessarely resolve the above

problem. The terms of the sum could appear as arguments of a z-function f

for which no expansion rule is known, e.g. f(t1+t2)+f(t3)�f(t1)�f(t2+t3).
As soon as this function is expanded, the hidden zeros may appear.

These examples demonstrate, that di�erent representations of the z-sums may

lead to complicated, unsimpli�ed expressions and to hidden zeros. As a con-

sequence the computation of a Z-expansion becomes a very expensive step in

this algorithm.

Z-expansion requires that the comparability classes of the argument are de-

termined and ordered. In contrast to our approach however, Z-expansions

are always only applied on subexpressions. Our algorithm, however, operates

on the expression as a whole and always compares the comparability classes

of all subexpressions. In Shackell's algorithm this situation only occurs if a

Z-expansion of the given function must be computed. However, it turns out

that due to the intermediate expression swell the algorithm to compute nested

forms breaks down even though potentially less comparisons have to be per-

formed. As a consequence, our algorithm usually runs faster than Shackell's.

Computing the limit of e1=x � (e1=x � 1)=(e1=x) for x! +1 our algorithm is

more than two times faster, and for computing the limit of ee
x

=e
e
x�e�e

e
x

as

x tends to +1 our algorithm is more than �ve times faster than the nested

72 4. Related Work

form algorithm. These timings give an indication only, as it is di�cult to

specify a fair set of examples. Note also that for most examples we tested,

the trivial implementation 4.3 for computing a nested form using our limit

facility MrvLimit runs faster than the direct implementation of the nested

form algorithm in Maple.

Another di�erence of the two approaches is the complexity of the code of

our implementations. The source code for Shackell's algorithm is about three

times larger than the code we used for our algorithm.

Although the overall approaches of these two algorithms are di�erent, the

algorithm to compute nested forms uses some techniques which have their

counterparts in our algorithm and vice versa. For example, when expanding

a z-term Z in terms of ! we �rst have to separate the arguments of any

z-function f(x + y) in the case that x only depends on z-terms which are

in a smaller comparability class than !. In terms of our notation a similar

separation has to be applied in the case thatmrv(y) = ! and (x) = (x+y) �
! (note that in our situation x and y do not necessarily tend to zero). We

simply expand f into the Taylor series around ! = 0 in this situation and so

automatically perform the separation of the arguments.

Another similarity is the determination of the right scale in which the series

expansion has to be performed. In Shackell's algorithm this is done by setting

to zero all z-prods which are in a greater comparability class than !i for

a certain i and then by testing whether this expression is zero. The zero

equivalence test for Zk (i.e. for the �rst function which is not zero) is also

performed by our algorithm, but in another context. When computing the

power series in terms of the most rapidly varying subexpressions ! � !k,

the leading exponent is zero and the leading coe�cient is non-zero, which

is con�rmed using the oracle for deciding zero equivalence. However, the

leading coe�cient of the series in terms of !j for j > k will be Zk, and so the

same zero equivalence test is done. The di�erence between the two approaches

concerning the search for the right entry in the asymptotic scale is that we are

searching from the most rapidly varying subexpression down to the correct one

in our algorithm, whereas Shackell searches from the smallest comparability

class up to the correct one.

Probably the most important di�erence between the two algorithms is that

Shackell's algorithm really solves a much more complicated problem than

merely computing limits, namely the computation of a nested form which

contains information about the asymptotic behaviour of the given function.

This normal form allows, for example, the computation of the nested expan-

sion of the compositional inverse of the nested expansion of a given function

f [73]. The conclusion of this comparison is that our approach is better suited

for computing limits, in particular with a symbolic manipulation system, and

that Shackell's algorithm has its own applications.

4.2 Ghost and Shadow Approach 73

4.2 Ghost and Shadow Approach

The ghost and shadow approach is an extension of the algorithm to compute

nested forms, and it is presented in [83, 82]. The ghost and shadow approach is

an extension over nested forms as it runs in any asymptotic �eld [83]. The most

interesting property of asymptotic �elds is, that a real Liouvillian extension

of an asymptotic �eld is also contained in an asymptotic �eld [83, Theorem

5]. This way, limits of Liouvillian functions can be computed.

However, the algorithm is similar to the nested form algorithm. The step of

replacing comparability classes by zero during the Z-expansion in the nested

form algorithm is replaced by the projection of the function onto a shadow

�eld. The shadow of a function with respect to a given comparability class is

obtained if all subexpressions of equal of higher growth are replaced by zero,

and the ghost is the di�erence of the function and its shadow. Cancellation

between shadows is also detected using a zero-equivalence algorithm.

Once the proper comparability class has been identi�ed, an asymptotic series

expansion is performed in this and lower comparability classes. This step is

similar to the expansion in terms of the most rapidly varying subexpression

in our algorithm.

The ghost and shadow approach is also a bottom-up recursive algorithm. As

a consequence, the tails of all series expansions have to be retained in closed

form { a property we identi�ed to be problematic for the nested form approach.

As soon as an implementation of the shadow and ghost approach is available,

a comparison is possible.

The ghost and shadow approach however is very interesting from a theoret-

ical point of view as it allows to extend the �eld of functions to Liouvillian

functions, i.e., limits can be computed in a �eld given by a tower of extension

of the basic constants by integrals, exponentials and real algebraic functions.

It is a topic of further research whether these ideas can be combined with our

approach.

What we will present in the the next section only shows how our algorithm can

be extended to functions which �t into the model of our algorithm. It turns

out, that almost all functions available in a symbolic manipulation system

(e.g. trigonometric functions, error functions, gamma functions, etc.) can

be covered with our algorithm, and thus, from a practical point of view, our

algorithm is very interesting and already got implemented in several computer

algebra systems.

74

5. Extensions

In Chapter 3 we described our algorithm for exp-log functions. In this chapter

we investigate how we can extend the algorithm to work on a wider class of

functions. Thereby we try to follow the lines of the algorithm for exp-log

functions, i.e. we investigate, which of the properties of exp-log functions,

which are needed by our algorithm, are also satis�ed by other functions, or

how other functions might be rewritten such that they can be covered by our

algorithm. It turns out, that with this approach, surprisingly many functions

can be handled.

Other algorithms have been presented which allow to compute limit for general

classes of functions, e.g. for meromorphic functions [82] and for Liouvillian

functions [83]. If the latter algorithm works over some function �eld, this

�eld can be extended by any real Liouvillian extension, i.e. an exponential,

an integral or an algebraic extension. These algorithms are very interesting

from a theoretical point of view, but they still await their implementation in

a computer algebra system.

Let F denote a �eld of germs of functions at x0 in which limits can be com-

puted with our algorithm for x ! x0 and let f 2 F . In the �rst section we

show that if g can be expanded into an (asymptotic) power series at the limit

of f (which may be in�nity), then our algorithm can also compute limits in

F(g � f). In the next section we show how to deal with elements g � f which

have an exponential or a logarithmic singularity at the limit of f . We close

this chapter with a de�nition of the MrvH �eld in which we can compute lim-

its with our algorithm and show which requirements of the algorithm prevent

us from extending the function class which can be handled further.

5.1 Tractable Functions

Let us assume that F is a �eld of germs of functions in x at x0 in which we can

compute limits at x = x0 with our algorithm and let f 2 F . In this section

we show that our algorithm can be extended to handle the computation of

the limit of g � f for x! x0, provided that g is a function which is tractable

at the limit of f .

76 5. Extensions

De�nition 5.1 A function f(x) is tractable at x = a from the right or from

the left if it does not have an essential singularity at a and if it can be expanded

into a (one sided, asymptotic) power series at a, i.e. if for ! > 0 the power

series

f(x) =

8>><
>>:

f(a + !)

f(a � !)

f(1=!)

f(�1=!)

9>>=
>>; = c0 !

e0 + c1 !
e1 + � � �

8>><
>>:

for a �nite a from the right

for a �nite a from the left

for a = +1
for a = �1

exists with ci 2 C; ei 2 IR and ei+1 > ei.

Note that we allow real exponents in the power series expansion, not just

integer or rational ones. To say that the power series is computable means

that we have an algorithm to e�ectively compute the coe�cients ci and the

exponents ei. Examples of tractable functions are analytic and meromorphic

functions. Note that the derivative of a tractable function is also tractable at

x = a. Moreover, if g is assumed to be tractable at the limit of f , then the

(one sided) limit of g � f exists and is either �nite or �1. This limit can be

computed provided that the leading term of the series of g at the limit of f

is known, that the limit of f can be determined and, in case that the latter is

�nite, that the sign of f(x) � a can be determined, where a is the limit of f .

Let us discuss now how we have to extend our algorithm in order to be able to

compute the limit of functions which contain g(f(x)) as a subexpression. Since

g is assumed to be tractable at the limit of f we can de�ne mrv(g(f(x))) =

mrv(f(x)). As a consequence, g(f(x)) cannot appear in any mrv set and thus

we do not have to discuss how to rewrite g(f(x)) in terms of another element

in the same comparability class. Moreover, the tractability of g at the limit of

f also implies that g(f(x)) can be expanded into an asymptotic power series

at the limit of f(x).

However, since we are eliminating the comparability classes according to their

order, it may happen that g has not to be expanded at a (where a is the limit

of f) but rather has to be expanded at a function whose limit is a. Such a

situation occurs if mrv(g(f(x))) �
 where

 =

�
(f(x) � a) if a is �nite

(f(x)) if a is �1 :

The series expansion of f(x) in terms of ! 2 mrv(g(f(x))) then has the form

c0 + h(!) with h(!) = c1 !
e1 + O(!e2), where e1 > 0 and ! � mrv(c0) �

 � (1) and c0 ! a. Thus, we have to be able to expand g(c0 + h(!)) into

a power series in terms of !. The solution is the same as in the exp-log case,

namely to expand g(c0 + h(!)) into its Taylor series at ! = 0, i.e.

Series(g(c0 + h(!)); !) = g(c0) + g

0(c0)h(!) +
g
00(c0)

2
h(!)2 + � � � :

5.1 Tractable Functions 77

This expansion is a proper asymptotic series as mrv(g(n)(c0)) = mrv(c0) � !,

as the derivatives of g are tractable as well.

What remains to be shown is that the extended algorithm still terminates.

Termination as proven in Section 3.4 uses the size of a function as a variant

function. Thus, we only have to extend the de�nition of this size appropri-

ately. We recall that the size is a measure for the number of comparability

classes which may emerge out of the expression during the rewriting and the

series expansion steps. It is de�ned as the size of the set S containing all

the expressions which potentially may be contained in an mrv set. Since a

tractable function never appears in any mrv set, we can still use the same

de�nition for the size of a function and simply de�ne S(g(f(x))) = S(f(x)).

It is easy to see that termination is still guaranteed then.

Examples of functions which are tractable at a �nite argument are all trigono-

metric functions, � (x), (x)1, �(x)2, erf(x), Si(x)3 and some Bessel functions.

arctan(x) is additionally tractable at x = �1. The functions dilog(x)4,

W(x)5, Ci(x)6 are tractable for �nite positive arguments, and Ei(x)7 is

tractable for �nite real arguments not equal to zero.

Example 5.2 We are able now to show how our algorithm computes the limit

lim
x!+1

e
x
�
sin
�
1=x+ e

�x�� sin
�
1=x
��
; (5.1)

which we introduced in Example 2.17. The set of most rapidly varying subex-

pression is fex; e�xg. If we replace e�x by ! we obtain

1

!

(sin(1=x+ !) � sin(1=x)) : (5.2)

Now we have a situation where mrv(sin(1=x+ !)) = ! � (1=x + !) = (x)

and we have to expand sin(1=x+ !) into its Taylor series at ! = 0,

sin(1=x+ !) = sin(1=x) + cos(1=x)! � sin(1=x)

2
!
2 + O(!3) (5.3)

and the series expansion of (5.2) becomes

cos(1=x)!0 � sin(1=x)

2
!
1 � cos(1=x)

6
!
2 +

sin(1=x)

24
!
3 +O(!4): (5.4)

1
 (x) is the digamma or zero'th polygamma function de�ned as � 0(x)=� (x). The n'th

derivative of (x) is the n'th polygamma function.
2
�(x) is the Riemann Zeta function.

3Si(x) is the sine integral de�ned as
R
x

t=0
sin(t)=tdt.

4dilog is the dilogarithm function and de�ned as dilog(x) =
R
x

1
ln t=(1� t)dt.

5W(x) is Lambert's W function de�ned as the principal branch of the solution of

W(x)eW(x) = x. See [19] for a reference.
6Ci(x) is the cosine integral de�ned as + lnx+

R
x

t=0
(cos t� 1)=tdt.

7Ei(x) is the exponential integral de�ned as
R
x

�1 e
t
=t dt.

78 5. Extensions

The leading term of (5.4) is cos(1=x) � !0 and so the limit (5.1) is one, which

could be derived with a further iteration on cos(1=x). {

If we have extended the function �eld by a tractable function, then we can

always close the new function �eld by the exponential and the logarithm func-

tions. Our algorithm can compute limits in this closed function �eld, as the

computation of the most rapidly varying subexpression as well as the series

expansion is always computable.

As an example we can now explain how our algorithm solves the limit

limx!0 e
csc x

=e
cotx, which we have already met in Section 2.3.2. Both, the nu-

merator and the denominator have an essential singularity, but both, csc(x)

and cot(x) are tractable at x = 0. We have realized that the power series

approach can only solve this problem if we simplify the function �rst using a

heuristic, although ecsc x=ecotx is analytic at x = 0. In this particular example

the combination of the two exponentials would do the job. Let us look how

our algorithm solves this problem.

Example 5.3 Let us compute the limit

lim
x!0

e
csc x

e
cotx

: (5.5)

Let us �rst assume that zero is approached from the right. The set of most

rapidly varying subexpressions is fecsc x; ecotxg and we have to rewrite one in

terms of the other. Let us �rst choose ! = e
� cotx. ecsc x can then be written

as ecsc x�cotx
!
�1 and ecotx as !�1. The rewritten function becomes

e
csc x�cotx

!
�1

!
�1

;

and the leading coe�cient of the series in ! is ecsc x�cotx. Conversely, if we

choose ! = e
� csc x, the rewritten function becomes

!
�1

e
cotx�cscx

!
�1
;

and the leading coe�cient of the series in ! is 1=ecotx�cscx. The same result

is obtained if zero is approached from the left.

We see, that our algorithm automaticallyperforms the transformation we have

proposed in Section 2.3.2. The most rapidly varying subexpression of both

e
csc x�cotx and 1=ecotx�cscx is x as the limit of csc x�cot x is zero. The latter

limit is computed recursively by a simple series expansion. Therefore both

leading coe�cients ecscx�cotx and 1=ecotx�cscx can directly be expanded into

a power series around x = 0 and the limit (5.5) turns out to be 1. {

5.2 Essential Singularities 79

5.2 Essential Singularities

If the argument of the function f tends to a limit a as x ! x0 at which

f is not tractable, then it cannot be expanded into a power series and the

algorithm cannot be applied without modi�cation. This happens for instance

if the function f has an essential singularity at a. In this section we show

how exponential and logarithmic singularities can be handled. The idea is

not to change the algorithm but rather to rewrite f into a function where

the singularities appear explicitly and which contains only tractable functions

besides of exponentials and logarithms.

If f only contains a logarithmic singularity at a, then we are in a special

situation. The coe�cients of the (asymptotic) power series of f(a + !) at

! = 0 are not constants then but rather depend on ln(!). However, when-

ever f(a + !) is expanded in the context of our algorithm in terms of !,

! = e
h is an exponential and thus ln(!) gets simpli�ed to h and no longer

depends on !, and furthermore, mrv(ln(!)) = mrv(h) � ! according to

Lemma 3.20. We met the same situation already for the series expansion of

the logarithm function in Section 3.3.3. We denote a function f to be semi-

tractable at a, if the coe�cients of the asymptotic power series of f(a + !)

only depend on ln(!). The derivatives of semi-tractable functions are semi-

tractable at a as well. Concerning termination we must add that out of a

semi-tractable function two comparability classes may evolve, and in order

to be able to specify an upper bound for the number of iterations we have

to de�ne S(f(g(x))) = S(g(x)) [fln(g(x))g in case that f is semi-tractable.

Examples of semi-tractable functions are Ei(x) at x = 0, (x) at x = +1,

dilog(x) at x = +1 and at x = 0+, Ci(x) at x = 0 and some Bessel functions

at x = 0+.

All other essential singularities cannot directly be handled by our algo-

rithm. However, if we succeed in isolating the essential singularities in a

pre-processing step, then the limit becomes solvable. The transformed ex-

pression has to be composed of semi-tractable functions only, composed with

exponential and logarithm functions. For all functions which have essential

singularities, such a transformation has to be provided for each point where the

essential singularity occurs. The error function erf(x) for example, which has

an essential singularity at x = +1, may be transformed to 1�erfs(x)= exp(x2)
where erfs(x) = (1� erf(x)) exp(x2) is tractable at x = +1.

We give below a list of possible transformations for functions which have

essential singularities at +1:

erf(x) ! 1� e

�x2 erfs(x) (5.6)

Ei(x) ! e
x Eis(x) (5.7)

� (x) ! e
�s(x) (5.8)

W(x) ! Ws(lnx) (5.9)

80 5. Extensions

�(x) ! �s(e
x) (5.10)

Ai(x)� ! 1

2
e
�2=3

p
x3
�
�

p
x

��1=2
Ais(x) (5.11)

Bi(x)y ! e
2=3

p
x3
�
�

p
x

��1=2
Ais(x) (5.12)

li(x)z ! xEis(lnx) (5.13)

where erfs, Eis, �s, etc., are (semi-)tractable functions which are de�ned by

those transformation rules. Obviously, several transformations are possible to

isolate an essential singularity for a given function at a particular point. For

example, � (x) at +1 could also be transformed with

� (x)! e
x ln x

e
�x

�̂s(x) (5.14)

at x = +1 where �̂s(x) is tractable, but obviously di�erent from �s(x).

For Ei(x) and erf(x) the following transformations might be used to separate

the essential singularity at x = �1.

Ei(x) ! e
x Eis(x) (5.15)

erf(x) ! �1 + e
�x2 erfs(�x) (5.16)

In order to apply the algorithm to these new tractable functions fs(x), their

asymptotic power series expansion has to be known. For the above examples,

these power series at x = +1 are

erfs(x) =
1p
�

1X
k=0

(2k)! (�4)�k
k!

�
1

x

�2k+1

=
1p
�

x
�1 � 1

2
p
�

x
�3 + O(x�5) (5.17)

Eis(x) =

1X
k=0

k!

�
1

x

�k+1

= x
�1 + x

�2 + 2x�3 + O(x�4) (5.18)

Ais(x) = 1� 5

48
x
�3=2 +

385

4608
x
�3 � 85085

663552
x
�9=2 +O(x�6) (5.19)

�s(x) = 1 + x

� ln 2 + x

� ln 3 + x

� ln 4 + O(x� ln 5) (5.20)

�s(x) = (lnx� 1)x+
ln 2�

2
� lnx

2
+

1

12
x

�1 � 1

360
x

�3 + O(x�5) (5.21)

�̂s(x) =
p
2� x�1=2 +

p
2�

1

12
x
�3=2 +

p
2�

1

288
x
�5=2 +O((x�7=2) (5.22)

Ws(x) = x� lnx+ lnxx�1 +
1

2
lnx(lnx� 2)x�2 +O(x�3) (5.23)

�Ai(x) is the Airy wave function Ai, [3, (10.4.1)].
yBi(x) is the Airy wave function Bi, [3, (10.4.1)].
zli(x) is the logarithmic integral, [3, (5.1.3)].

5.2 Essential Singularities 81

Note that �s(x) and Ws(x) are actually semi-tractable.

For the semi-tractable functions fs(x) we must also be able to compute the

Taylor series of fs(g(x)) in case that mrv(g(x)) � (g(x)), and the derivatives

are therefore needed.

erf 0s(x) = � 2p
�

+ 2 erfs(x)x (5.24)

Ei0s(x) =
1

x

� Eis(x) (5.25)

W
0
s
(x) =

Ws(x)

1 +Ws(x)
(5.26)

�s
0(x) = (x) (5.27)

Since �(x), � (x) and (x) do not satisfy an algebraic di�erential equation, the

derivatives thereof cannot be expressed in terms of these functions themselves.

However, the derivatives still exist and are tractable.

We close this section with some examples which demonstrate how our limit

algorithm computes limits of expressions which contains functions with es-

sential singularities. The behaviour of other algorithms on these problems is

shown in Chapter 8.

Example 5.4 The following example illustrates this pre-processing step for

an easy problem. Consider

lim
x!+1

Ei(x+ e
�x) e�x x:

The argument of the exponential integral tends to +1 as x ! +1 and we

transform the function using the rule (5.7):

Ei(x+ e

�x) e�x x! e

x+e�x Eis
�
x+ e

�x�
e

�x
x =: u:

mrv(u) = fe�x; ex+e�xg and we set ! = e
�x. The second element in mrv(u)

becomes ex+e
�x

= e
!
!
�1. After the rewriting step we must expand e! Eis(x+

!)x into a series at ! = 0+. Note that we havemrv(Eis(x+!)) � ! � (x+!)

and thus Eis(x + !) has to be expanded into a Taylor series in ! at ! = 0,

although x by itself tends to +1. With (5.25) we get for the series expansion

of u

Series(e! Eis(x+ !)x; !) = Eis(x)x+ ! +
x� 1

2x
!
2 + O(!3):

The leading term is Eis(x)x whose most rapidly varying subexpression is

x. After moving up one level we have to compute the series expansion of

Eis(1=!)=!. We can now use the series expansion (5.18) and get

Series(Eis(1=!)=!; !) =

1X
k=0

k!!k = 1 + ! + 2!2 +O(!3)

82 5. Extensions

and hence lim
x!+1

Ei(x+ e
�x) e�x x = 1. {

Example 5.5 In this example we compute the limit

lim
x!+1

ln(� (� (x)))

e
x

:

Since the argument of the inner Gamma function tends to in�nity we rewrite

it to e
�s(x). The limit thereof is in�nity as well (cf. with the asymptotic

expansion (5.21)) and our original expression gets transformed to

ln(� (� (x)))

e
x

! ln e�s(e
�s(x))

e
x

=
�s(e

�s(x))

e
x

=: u:

For computing the mrv set we must compare e�s(x) with ex. The leading term

of the asymptotic series of the quotient of the logarithms of the two is lnx

and thus e�s(x) � e
x and we set e�s(x) = 1=!1. ln(1=!1) thus becomes �s(x).

The series expansion of the rewritten function u in terms of !1 is

�s(1=!1)

e
x

=
ln(1=!1)� 1

e
x

!

�1
1 + O(1) =

�s(x)� 1

e
x

!

�1
1 +O(1):

As a consequence �(ln(� (� (x)))=ex) < 0. In order to determine the sign of the

leading coe�cient we have to continue the iteration with the leading coe�cient

(�s(x) � 1)=ex. The most rapidly varying subexpression thereof is ex and the

leading coe�cient of the series in !2 = e
�x is �s(x) � 1. Strictly following the

path of the algorithmwe have to move up one level since mrv(�s(x)�1) = fxg.
The series of �s(e

x)� 1 in !3 = e
�x is

�s(1=!3)� 1 = (ln(1=!3)� 1)!�1
3 +O(1) = (x� 1)!�1

3 +O(1)

as ln(1=!3) = � ln(!3) = x. When moving up the leading coe�cient x�1 once
again and expanding it into a series we get a series with leading coe�cient

one. Therefore (�s(x)� 1)=ex is ultimately positive and

lim
x!+1

ln(� (� (x)))

e
x

= +1:

{

Example 5.6 In this example we want to solve the dominance problem be-

tween x and exp(exp(exp((((x)))))), i.e. we want to compute the limit

lim
x!+1

e
e
e
 (((x)))

x

:

This example is mentioned in [72] as an example which has to be performed

in a very general asymptotic scale. Since (x) is semi-tractable at x = +1,

5.2 Essential Singularities 83

no pre-processing is necessary. The most di�cult step in this example is

the computation of the mrv set of u where u = exp(exp(ef))=x with f =

 (((x))). mrv(f) = fxg and according to Algorithm 3.12 we have to

compare ef with x to determine mrv(ef). This is done by computing the limit

of f= ln(x). To determine this limit we must move up one level and expand

the series in terms of ! = e
�x. The leading term thereof is ((x))=x �!0 and

we have to move up a further level. The leading term of the series expansion

of the latter leading coe�cient in terms of ! = e
�x is (x)! ! 0 and as a

consequence ef � x and mrv(ef) = fxg.

We similarly get mrv(ee
f

) = fxg and it remains to compare ee
e
f

with x.

This is done by computing the limit of ee
f

= ln(x). The leading coe�cient of

the series after moving up the �rst time is ee
 ((x))

=x. The mrv set thereof

however is fee ((x)) ; xg as the limit of e ((x))= ln(x) is 1. Thus, we have

to move up once again and rewrite the �rst element of the latter mrv set in

terms of the second one which leads to the leading coe�cient ee
 (x)�x after

the series expansion. The mrv set thereof is fe (x); xg as (x)= ln(x) tends

to 1. We move up once more and rewrite the elements in the mrv set and get

e
(e (1=!)�x�1)=!. The series expansion thereof is e�1=2 + e

�1=2
=24 � ! +O(!2)

and thus ee
e
f

and x are in the same comparability class. As a consequence

S = mrv(u) = mrv

e
e
e
f

x

!
=

�
x; e

e
e
f

�
:

Since x 2 S we have to move up one level and as jSj = 2 we must rewrite the

second element in terms of ex. The limit of ee
f

= ln(x) is e�1=2 as we have seen

above and the rewritten function u in terms of ! = e
�x becomes

u1 = e

�
e
e
 (((1=!)))

�
�e�1=2

x

!
1�e�1=2

:

The series of u1 at ! = 0 is

Series(u1; !) = e

�
e
e
 ((x))

�
�e�1=2

x

!
1�e�1=2

+O

�
!
2�e�1=2

�

and since 1� e
�1=2

> 0 we have

lim
x!+1

e
e
e
 (((x)))

x

= 0:

{

Example 5.7 This is an example where cancellations would appear in two

di�erent comparability classes if a classical algorithm based on generalized

84 5. Extensions

series expansions were applied. Moreover, it shows how functions are handled

which do not satisfy a di�erential equation.

lim
x!+1

� (x+ e
�x + 1=� (x))� � (x+ e

�x)� (x)

e
�x (lnx)2

(5.28)

After the pre-processing step we have to compute the limit of

u =
e

�s(x+e�x+e� �s(x)) � e
�s(x+e

�x) � (x)

e
�x (lnx)2

The size of this function is eight as both �s and are semi-tractable, and

S(u) =

�
e

�s(x+e�x+e��s(x))
; e
�s(x+e

�x)
; e
��s(x)

; e
�x
; x; lnx;

ln
�
x+ e

�x + e
� �s(x)

�
; ln (x+ e

�x)

�
:

Thus we expect to get the result after at most eight iterations.

The set of most rapidly varying subexpressions of u is

mrv(u) = fe�s(x+e�x+e� �s(x)); e�s(x+e�x); e��s(x)g

and we rewrite all elements in terms of the last one, which tends to zero and

which we call !1:

e

�s(x+e�x+e� �s(x)) = e

�s(x+e�x+e� �s(x))��s(x)
!

�1
1

e
�s(x+e

�x) = e
�s(x+e

�x)��s(x)
!

�1
1 :

The rewritten expression becomes

u1 =
e
�s(x+e�x+!1)��s(x)

!
�1
1 � e

�s(x+e
�x)��s(x)

!
�1
1 � (x)

e
�x (lnx)2

;

and we have a cancellation between e�s(x+e
�x+!1)��s(x) and e�s(x+e

�x)��s(x).
The leading term of the di�erence of these two functions vanishes. With the

derivative (5.27) for �s(x) the series expansion of u1 in !1 becomes

u1 =

�
e
�s(x+e

�x)��s (x)(1+�s0(x+e�x)!1+O(!21))�e�s(x+e
�x)��s (x)

�
!
�1
1
� (x)

e�x (ln x)2

=
e
�s(x+e

�x)��s (x) �s
0(x+e�x)� (x)

e�x (ln x)2
+O(!1)

=
e
�s(x+e

�x)��s (x) (x+e�x)� (x)
e�x (ln x)2

+ O(!1):

The mrv set of the leading coe�cient of the above series expansion is fe�xg
and we expand it into a series in !2 = e

�x. Note that we have cancellations
between �s(x+ !2) and �s(x) and additionally between (x+ !2) and (x).

5.3 MrvH �elds 85

u2 =
e
�s(x+!2)��s (x) (x+!2)� (x)

!2 (ln x)2

=
(1+�s

0(x)!2+O(!22))((x)+
0(x)!2+O(!22))� (x)

!2 (ln x)2

=

0(x)+�s

0(x) (x)

(ln x)2
+O(!2)

=

0(x)+ (x)2

(ln x)2
+O(!2):

The mrv set of the latter leading coe�cient is fxg and we thus move up one

level and expand it in !3 = e
�x.

u3 =

0(1=!3) + s(1=!3)

2

x
2

= 1 +
1� x

x
2

!3 +O(!2
3)

and the limit of (5.28) is one. We needed only three iteration steps instead of

the possible eight. The size of a function generally signi�cantly overestimates

the number of comparability classes which may evolve out of it, but does

provide an upper bound. {

5.3 MrvH �elds

As a result of the ideas presented in the last two sections we are now able to

specify the class of function in which our algorithm can compute limits. We

call a function �eld F an MrvH �eld if it has all the properties required for

our algorithm to compute lim
x!x0

f(x) for f 2 F .

De�nition 5.8 A �eld F of germs of functions at x0 is an MrvH �eld if

(1) F is a Rosenlicht �eld;

(2) if f(g(x)) 2 F then g(x) 2 F and one of the following holds

(a) f = exp, and if g(x) tends to in�nity then g(x) 2 IR,

(b) f is ultimately semi-tractable, i.e. computable semi-tractable, at

the limit of g(x), and the coe�cients of the series have to be in F ,
(c) f(g(x)) can be transformed into an expression which only contains

functions of types (a) and (b);

(3) An oracle is available in F to decide zero-equivalence for any f 2 F .

(4) f 2 F can be represented in �nite terms as an expression tree.

86 5. Extensions

A Rosenlicht �eld is a Hardy �eld which also contains any real power of any

positive element and which has �nite rank [79]. It might be useful to consider

real powers of positive elements and not only rational ones. Note that even if

H has �nite rank it may happen that the rank of the new �eld obtained by

adding real powers of any element may be in�nite (see e.g. [82]). To prevent

such a situation we require the Hardy �eld to contain real powers and to be

of �nite rank.

Our algorithm cannot work in Hardy �elds of in�nite rank since we must be

able to specify the largest comparability class, which is not possible in a Hardy

�eld of in�nite rank in general. Furthermore, a Hardy �eld of in�nite rank

may contain functions with essential singularities which cannot be transformed

into any �nite exp-log function [9].

The condition that an MrvH �eld F has to be a Hardy �eld implies that the

limit for f 2 F exists and furthermore that the comparability classes in F
can be compared.

The condition that an MrvH �eld F has to be a �eld implies that the series

expansions can always be performed. If the series is computed in terms of !,

then the coe�cients, which are elements in F , have to be invertible.

An example of functions which are not contained in a Hardy �eld and as

a consequence cannot be handled with our algorithm are functions which

have oscillating essential singularities, such as the trigonometric functions at

x = �1 or � (x); (x) and Ai(x) at x = �1. If the �eld contains such

functions it may no longer be possible to compare comparability classes. For

example ex sin x oscillates between the two comparability classes (ex) and

(1). The latter problem could be resolved using a variant of interval calculus.

The comparability class of a subexpression could be described by an interval

of the smallest and the largest comparability class the function may belong

to.

More di�cult is to decide whether the coe�cients of the series expansions are

de�ned in a neighbourhood of in�nity if F is not a �eld, i.e. to decide whether

they do not have arbitrary large zeros. Consider

lim
x!+1

1

cos x
e
�x
:

If we take e�x as most rapidly varying subexpression then the series expansion

in terms of ! = e
�x is 1= cos(x)!. As the leading coe�cient however has

arbitrary large zeros, this limit is not de�ned. In practice it is di�cult to

decide whether the leading coe�cient is de�ned for arbitrary large x. Shackell

proposed in [75] to use an interval calculus approach. With this method our

algorithm could be extended to work over domains which are not �elds as

well.

MrvH �elds are a proper subset of Rosenlicht �elds. An example is G =

IR(x; � (x+ e
�x sinx)) which is a Hardy �eld of �nite rank but which is not

5.3 MrvH �elds 87

contained in any MrvH �eld (see [82]). It is not easy to decide automatically

that G is a Hardy �eld.

Piecewise semi-tractable functions are also contained in anMrvH �eld as they

are ultimately semi tractable. Examples are jxj, bxc, dxe, [x], max(f1(x),

f2(x)), min(f1(x), f2(x)) and others. In practice, these functions are also

transformed during the pre-processing step. For example for max(f1(x); f2(x))

it is decided whether f1(x) or f2(x) is ultimately larger and the max function

is replaced by the larger one.

In an MrvH �eld we must also be able to decide zero equivalence. This

problem is central to symbolic computation involving transcendental func-

tions [59, 60, 15, 55, 41, 22, 81] and to handle it in practice a number of

partial algorithms have been suggested.

One method is based on evaluations of the function f at a number of points.

Mathematically, this can be viewed as a homomorphism from the function �eld

containing f onto some �eld on which the zero-equivalence problem can be

solved. There are two obvious choices for the latter �eld, namely a �nite �eld

of integers or the pseudo �eld of oating point numbers. The former choice has

been developed in detail by Martin [51] under the name of hash coding, and

has been extended in many directions [29, 30, 54, 74]. The mapping onto the

�eld of oating point numbers has been investigated by Oldenhoeft in [57]. If

an upper bound of necessary point evaluations is not available, or if this bound

is beyond practical borders, the result is a probabilistic algorithm for deciding

zero equivalence. Such an algorithm is always right if the answer returned

says that the expression is not zero, but may be wrong with a probability

" > 0 in the other case.

Note, that in many cases the zero equivalence problem of functions can be

reduced to the zero equivalence problem of constants, provided that the func-

tions satisfy an algebraic di�erential equation over the constants.

An attractive alternative to solve the zero equivalence problem for constants is

to assume Schanuels conjecture [6]: If z1; : : : ; zn are complex numbers which

are linearly independent over the rationals, then fz1; : : : ; zn; ez1 ; : : : ; ezng has
transcendence rank at least n. It has been shown for larger and larger sets

of constants, that the zero equivalence problem is decidable provided that

Schanuel's conjecture is true [17, 61, 62, 63].

88

6. Asymptotic Series

As a byproduct of the limit computation algorithm we obtain an algorithm

for computing asymptotic series. We discuss some aspects of this algorithm in

this chapter. Note that this algorithm has already been presented in [31]. As

it is based on the same ideas as the MrvLimit algorithm, we call the algorithm

for computing asymptotic series MrvAsympt.

De�nition 6.1 (Asymptotic Series) An asymptotic series at in�nity of a

function f which is de�ned in a neighbourhood of in�nity is a series of the

form

f(x) = c1'1(x) + c2'2(x) + � � �+ ck 'k(x) + r(x) (6.1)

where the ci 2 IR are constants and limx!+1 r(x)='k(x) = 0. The 'i are

functions of an asymptotic scale S which is a set of real-valued functions

de�ned in a neighbourhood of in�nity which is totally ordered according to

the relation i < j) 'j(x)='i(x)! 0 as x! +1.

Asymptotic series of this form are also said to be of Poincar�e type. More gen-

eral expansions are obtained if the coe�cients ci are allowed to be functions.

An example of an asymptotic scale is fxk j k 2 ZZg. From the asymptotic scale

S we expect that it is as expressive as possible, i.e. one should immediately see

the behavior of the function f at in�nity when looking at its asymptotic se-

ries. Very expressive elements are nested exponentials, as e.g. ex ln x or ee
ln3 ln x

.

However, not all functions can be expanded into an asymptotic series in such

a scale. For example

f = exp (exp (ex=(1� 1=x))) (6.2)

= exp
�
exp

�
e
x (1 + x

�1 + x
�2 + � � �+ x

�k + � � �)��
= exp

�
e
e
x

e
e
x
=x
e
e
x
=x

2 � � �eex=xk � � �
�
;

can neither be expanded into a sum of simple exp-log functions nor be rep-

resented as an in�nite product of simple exp-log functions. The only scale in

which this function can be expanded easily is a scale which contains f itself,

and then the asymptotic series is 1 � f . Note that these considerations led to

the de�nition of nested forms and nested expansions in [79].

90 6. Asymptotic Series

6.1 The MrvAsympt Algorithm

Let f be a pre-processed element of an MrvH �eld. We �rst determine
 =

mrv(f). If x 2
 then we move up one level by replacing x by ex and compute

the asymptotic series for f(ex). The asymptotic series for f(x) can then be

obtained by moving back, i.e. by replacing x by ln(x). If x 62
 we choose

!1 = e
h so that !1 �
, !1 ! 0 and !1 or 1=!1 2
. f is then rewritten and

expanded in terms of !1. The result is an asymptotic series with coe�cients

which are in smaller comparability classes than !1. Then we can recursively

expand these coe�cients one by one into their asymptotic series in terms of

their most rapidly varying subexpressions. We stop the recursion as soon

as the coe�cients are constants and stop the iteration as soon as we have

computed enough terms for the approximation. A typical situation for the

computation of the asymptotic series of a function f is shown in the following

diagram.

?

?

�

�

�

��

H
H
H
H
H
H
H
Hj

f

c11 !
e11

1 + c12 !
e12

1 + c13 !
e13

1 + O(!e141)

c21 !
e21

2 + c22 !
e22

2 +O(!e232)

c31 !
e31

3 + c32 !
e32

3 c41 !
e41

4 + O(!e424)

mrv(f) = !1

mrv(c11) = !2 � !1

mrv(c21) = !3
mrv(c22) = !4 � !2

Note that in this arti�cial example the �rst two terms of the asymptotic series

for c21 form an exact representation for c21, and therefore the O-term has

been omitted. The �rst four terms of the asymptotic series for f become

((c31 !
e31

3 + c32 !
e32

3) !e212 + (c41 !
e41

4 +O(!e424)) !e222) !e111 ; (6.3)

or in expanded form

c31 !
e31

3 !

e21

2 !

e11

1 + c32 !
e32

3 !

e21

2 !

e11

1 + c41 !
e41

4 !

e22

2 !

e11

1 +O (!e424 !

e22

2 !

e11

1) ;

(6.4)

where c31; c32; c41 2 IR. In this particular example we had to expand the

coe�cient c22 into a series as well since the series approximation of c21 was

6.1 The MrvAsympt Algorithm 91

an exact one. We prefer to present the result in the following examples in

factored form (6.3).

In [83], the series (6.4) is called an asymptotic T -expansion with T = f!4, !3,
!2, !1g (provided that (!4) < (!3), i.e. the elements in T must be strictly

ordered according to their growth).

Example 6.2 As an example let us look again at the function

f =
�
sin
�
1=x+ e

�x�� sin
�
1=x
��

(6.5)

which we have already seen in Example 2.17 and 5.2.

The mrv set of f is fe�xg and so !1 = e
�x. The rewritten expression is

sin(1=x+!1)�sin(1=x) and the series expansion thereof in !1 is cos(1=x)!1�
sin(1=x)=2!2

1 + O(!3
1). Next we compute recursively the asymptotic series

expansion of the �rst coe�cient cos(1=x) = cos(!2) and get 1�1=2!2
2+O(!

4
2).

The �nal asymptotic series thus becomes

�
sin
�
1=x+ e

�x�� sin
�
1=x
�� � �1� 1

2x2
+

1

24x4
+O

�
1

x
6

��
e
�x
: (6.6)

{

If we look at some further examples we realize, that although e�ective for some

functions, the algorithm produces rather useless results for other functions.

e
x

�
e

1
x
+e�x � e

1
x

�
� 1 +

1

x

+
1

2x2
+

1

6x3
+ O

�
1

x
4

�
(6.7)

�

�
x+ 1

� (x)

�
� �

�
x

�
lnx

� 1� 1

2x lnx
� 1

12x2 lnx
+ O

�
1

x
4 lnx

�
(6.8)

e
� (x)

� (ex)
� 1

� (ex)
e
� (x) (6.9)

� (x) � � (x) (6.10)

The algorithm constructs the asymptotic scale which it uses on the y ac-

cording to the comparability classes which evolve out of the given function.

In example (6.10) the most rapidly varying subexpression of � (x) = e
�s(x)

turns out to be � (x) itself. If we take � (x) as the representative of this com-

parability class and include it into the asymptotic scale, then the asymptotic

expansion of � (x) becomes simply 1 �� (x). Although in example (6.9) the re-

sult is also identical to the input, the algorithm has done a little bit more. The

most rapidly varying subexpression of e� (x)=� (ex) has been identi�ed to be

e
� (x) which tends to in�nity. The coe�cient of the series expansion in terms

92 6. Asymptotic Series

of e� (x) is 1=� (ex) = e
��s(ex) which is equivalent to its most rapidly vary-

ing subexpression. The asymptotic scale in which (6.9) has been expanded

is S = [e� (x); � (ex)]. Note that for functions containing essential singulari-

ties, the appearance of the scale depends on how the essential singularities are

isolated during the pre-processing step.

Although the expansions (6.9) and (6.10) are correct and valid results of our

algorithm, we would like the algorithm to use more expressive scales if possi-

ble. In other words, the set of most rapidly varying subexpressions
 should

be rewritten in terms of an element which is not necessarily in
 itself but

rather in some normalized form. As all elements in
 are exponentials when

they are rewritten, the following idea to de�ne a normalized representative

might be used. From any exponential in
 we compute the leading term c1 '1

of the asymptotic series of its argument and de�ne ! = e
'1 to be the normal-

ized representative of
. According to De�nition 6.1 this function is in the

same comparability class as all elements in
. For example, the normalized

representative of f� (x)g is ex ln x as � (x) = e
�s(x) and the leading term of the

asymptotic series of �s(x) is x lnx (cf. (5.21)). However, as a consequence of

this choice for !, termination is no longer guaranteed, since in Section 3.4.1.1

(proof of termination) we assumed explicitly that ! or 1=! 2
. Consider for
example

f = e
e
x
=(1�1=x)

: (6.11)

The most rapidly varying subexpression of f is f itself and its normalized

representation is ee
x

. If we rewrite f in terms of ee
x

we become

f1 = e
e
x
=(1�1=x)�ex � eex :

The leading coe�cient of the series of f1 in ! = e
�ex is c11 = e

e
x
=(1�1=x)�ex.

mrv(c11) = fc11g and the normalized representation thereof is ee
x
=x. If we

rewrite c11 we get

f2 = e
e
x
=(1�1=x)�ex�ex=x � eex=x:

The normalized representatives of the comparability classes of the subsequent

leading coe�cients are mrv(c21) � e
e
x
=x

2

;mrv(c31) = e
e
x
=x

3

; : : : ;mrv(ck1) =

e
e
x
=x
k

; : : : and the asymptotic series after k steps is

ck+1;1 e
e
x
=x
k � � �eex=xeex

and obviously this recursion does not terminate. The reason is that the size of

f gets never reduced during the expansion process. The size of f is Size(f) =

jfeex=(1�1=x)
; e
x
; xgj= 3 but the size of the rewritten function f1 is Size(f1) =

jfeex=(1�1=x)�ex
; e
e
x

; e
x
; xgj = 4. As the leading coe�cient of the series of f1

in ! does not depend on ! its size is smaller than the one of f1 and turns

out to be three, i.e. the leading coe�cient of the series expansion of f1 has

the same size as f . The leading coe�cient of the series of f2 is also three and

so on. As we see, the size does not get reduced and the recursion will never

terminate.

6.1 The MrvAsympt Algorithm 93

In order to guarantee termination of the recursion of the MrvAsympt algo-

rithm we test whether the size of an expression grows due to the rewriting in

terms of the normalized representative of the mrv set
 or not. If it grows

then we use an element out of
 to rewrite the elements in
.

However, a growth of the size of a function due to the rewriting step does not

necessarily imply that the algorithmdoes not terminate if it is continued. This

may be a temporary e�ect. As a consequence we allow the speci�cation of an

upper bound up to which the size may grow due to all rewriting steps along

the computation of the asymptotic series. If this bound is set to zero then a

growth of the size due to the rewriting step is never allowed. If this bound is

positive however, then a growth is allowed and the bound is reduced by the

di�erence of the sizes of the original and the rewritten function. The reduced

bound is then applied for the asymptotic expansions of the coe�cients.

Let us demonstrate the behaviour with the help of the � (x) function. The

growth-bound can be passed as fourth (optional) argument to theMrvAsympt

function. Other than this change, the interface of MrvAsympt is identical to

that of Maple's asympt command. If the growth-bound is set to two, then

the normalized representative ex ln x is used for the comparability class of � (x).

In order to expand the leading coe�cient eln(� (x))�x ln x as well, the growth-

bound has to be set to at least three, and then we get the usual asymptotic

expansion of � (x).

> MrvAsympt(GAMMA(x),x,2,0);

� (x)

> MrvAsympt(GAMMA(x),x,2,2);

e

ln � (x)�x ln x
e

x ln x

> MrvAsympt(GAMMA(x),x,2,3); p
2� x�1=2 +

p
2�

12
x
�3=2 + O(x�5=2)

!
e
�x
e
x ln x

Another nice feature of the growth-bound is that for functions which can

be represented as an in�nite asymptotic product, the MrvAsympt command

computes the �rst few terms of this product if the growth-bound is set and

keeps the rest in closed form. For the function (6.11) we get

> MrvAsympt(exp(exp(x)/(1-1/x)),x,1,4);�
e

e
x

1�1=x
�ex� e

x

x
� e

x

x2
� e

x

x3

�
e

e
x

x3 e

e
x

x2 e

e
x

x
e

e
x

However, if a representation in a normalized scale is neither possible as an

asymptotic sum nor as an asymptotic product, the algorithm has to take an

expression out of the mrv set as an entry in the asymptotic scale. The growth-

bound has no e�ect in such a situation. We have already seen an example of

such a function in (6.2).

> MrvAsympt(exp(exp(exp(x)/(1-1/x))),x,1,5);

94 6. Asymptotic Series

e
e

e
x

1�1=x

Example 6.3 In this example we present further results of the MrvAsympt

algorithm. Note that none of these problems can be solved with Maple's

asympt command, as the algorithm being used there also su�ers from the

cancellation problem.

Note as well that example (6.13) is the series expansion of (6.9) but with a

positive growth-bound. Example (6.16) has already been discussed in Exam-

ple 5.6. The asymptotic expansions of example (6.17) and (6.18) di�er due to

the di�erent growth-bound.

> Asympt := proc(e) e = MrvAsympt(args) end:

> Asympt((exp(sin(1/x+exp(-exp(x))))-exp(sin(1/x))), x, 4); (6.12)

e

sin(1=x+e�e
x

) � e
sin(1=x) =

1 + 1
x
� 1

2x3
+ O

�
1
x4

�
e
ex

> Asympt(exp(GAMMA(x))/GAMMA(exp(x)), x, 2, 2); (6.13)

e
�(x)

� (ex)
=
�

1p
2�

(ex)1=2 � 1

12
p
2�

(ex)�1=2 +O

�
(ex)�3=2

��
e
e
x

e
�xex

e
� (x)

> Asympt((3^x+5^x)^(1/x), x, 3); (6.14)

(3x + 5x)
1=x

= 5 + 5
x
(e�x)

ln 5�ln 3
+
�� 5

2x
+ O

�
1
x2

��
(e�x)

2 ln 5�2 ln 3

> e3 := x -> exp(exp(exp(x))):

> Asympt(e3(x)/e3(x-1/e3(x)), x, 3); (6.15)

e
e
e
x

ee
ex�1=ee

ex = 1 + e
x
e
e
x

�
e
e
e
x
��1

+
�
1
2
(ex)2

�
e
e
x�2

+ O

�
(ex)2 ee

x�� �
e
e
e
x
��2

> Asympt(exp(exp(Psi(Psi(x)))), x, 3); (6.16)

e

e
 ((x))

=

�
e

�1=2 +
1

24

e
�1=2

lnx
+

25

1152

e
�1=2

ln2 x
+ O

�
1

ln3 x

��
x

> Asympt(GAMMA(x+exp(-x))-GAMMA(x), x, 4); (6.17)

� (x+ e
�x)� � (x) =

�
lnx� 1

2x
� 1

12x2
+ 1

120x4
+ O

�
1
x6

��
e
�x

� (x)

> Asympt(GAMMA(x+exp(-x))-GAMMA(x), x, 2, 2); (6.18)

� (x+ e
�x) � � (x) =��p
2� lnx

�
x
�1=2 +

�p
2�
12

lnx+O(1)
�
x
�3=2

�
(e�x)2 ex ln x

{

6.2 Hierarchical Series 95

6.2 Hierarchical Series

In this section we describe another form for representing the resulting asymp-

totic series, which arises if we slightly change our algorithm. After having

determined the normalized representative ! of the set of most rapidly varying

subexpressions of f , f is rewritten and expanded in terms of !, for example,

according to the diagram on page 90 the series

c11 !
e11 + c12 !

e12 + c13 !
e13 + O(!e14) (6.19)

is computed. However, this is also an asymptotic series, although of a more

general type than that de�ned in De�nition 6.1, as the coe�cients are not

constants. As an ordinary asymptotic series can be obtained from (6.19) by

expanding the coe�cients into asymptotic series recursively as well, we call

such a series a hierarchical series. Hierarchical series have several advantages

over conventional asymptotic series.

First, the result provides more information. Consider the function f =

sin(1=x+ exp(�x)). The ordinary asymptotic series of Poincar�e type is

f(x) � 1

x

� 1

6x3
+

1

120x5
+O

�
1

x
7

�
(6.20)

whereas the hierarchical asymptotic series of f is

f(x) � sin(1=x) + cos(1=x) e�x � 1

2
sin(1=x)

�
e
�x�2 +O

��
e
�x�3�

: (6.21)

The �rst series is nothing else than the asymptotic series of the leading term

of the second series. The rest of the information inherent in (6.21) is lost

in (6.20).

Another advantage is that it may be possible to compute some levels of a

hierarchical series on functions which are di�cult to expand in a regular se-

ries. This happens, for example, for functions where the form of the regular

asymptotic series depends on relations between the parameters which are not

speci�ed. An easy example is

f = e
1=x+e�x

2
(eax�ebx) � e

1=x
:

where a and b are real constants.The hierarchical series thereof is

f � e
1=x(eax � e

bx) e�x
2

+
e
1=x

2
(eax � e

bx)2 (e�x
2

)2 +O

�
(e�x

2

)3
�

whereas the conventional asymptotic series depends on the sign of a� b:

f �
(�

1 + 1
x
+ 1

2x2
+O(1

x3
)
�
(ex)a e�x

2

if a > b��1� 1
x
� 1

2x2
+ O(1

x3
)
�
(ex)b e�x

2

if b > a.

96 6. Asymptotic Series

Finally, if a function f can be expanded into an in�nite asymptotic product,

then the hierarchical series will expand the �rst factor and encode the product

of the rest into the coe�cient. Further factors can be obtained by expanding

the coe�cient into further hierarchical series.

The problem of termination of the algorithm to compute hierarchical series is

obviously not an issue, as only the most rapidly varying comparability class

is used. In other words, termination is under user control.

7. Implementation

The Maple code of an implementation of our algorithm for computing limits

of exp-log functions can be found in Appendix A. In this chapter we focus on

some particular problems which appear during an actual implementation in

a computer algebra system. The emphasis will thereby be on the underlying

series facility. We also discuss the problem of zero recognition from an imple-

mentation point of view, as well as the problem of branch cuts. Finally we

briey discuss the implementation of the limit routine as it is available in the

regular Maple system.

7.1 Series Computation

We required in Section 3.3 that the underlying series model must be able

to represent power series which contain arbitrary real constants as exponents.

Puiseux series are not powerful enough. This is not only a theoretical subtlety.

For easy limit computations this power is already needed. Consider

lim
x!+1

(3x + 5x)
1=x

: (7.1)

First this problem is transformed to

lim
x!+1

exp

ln
�
e
ln(3)x + e

ln(5)x
�

x

!
: (7.2)

The set of most rapidly varying subexpression is feln(3)x; eln(5)xg. If we set

! = e
� ln(3)x the above expression can be rewritten as

exp

�
ln(1=! + (1=!)ln 5= ln 3)

x

�
(7.3)

whose series is

5 +
5

x

!
ln 5= ln 3�1 � 5(x� 1)

2x2
!
2 ln 5= ln 3�2 +O

�
!
3 ln 5= ln 3�3

�
(7.4)

which agrees with the result (6.14) we obtained in Example 6.3. The exponents

cannot be represented by rationals, hence the above series is not a Puiseux

series. By the way, the result of the limit of (7.1) is 5.

98 7. Implementation

7.1.1 Models to Represent General Power Series

Since Maple does not support such a general series facility, we had to build

our own as the basis for our limit implementation. These series approxima-

tions cannot be stored in a dense representation as the exponents are not

enumerable. The series must be represented as an ordered collection of terms

where each term consists of a coe�cient and of its corresponding exponent.

There are two basically di�erent approaches which may be used here.

7.1.1.1 Truncated Power Series

One possibility is to implement algorithms to work with truncated power

series. Truncated power series are approximations to the actual series as they

only contain a �nite number of terms. They can be represented, for example,

as a �nite list of terms. If a truncated series does not contain all nonzero

terms of the exact power series, the representation must encode the order of

the truncation. This is usually done by adding a term with the order of the

truncation, whose coe�cient has the form O(1). Almost all existing computer

algebra systems provide facilities for the manipulation of truncated power

series.

If a series approximation of a function is computed, the user has to specify,

in advance, how many terms the result should contain, or alternatively, which

truncation order the result should have. However, the series expansion is

usually performed recursively bottom up (cf. Algorithm 2.16) and it is di�cult,

if not impossible, to specify up to which order (or how many terms of) the

intermediate approximations have to be computed. Terms may be lost due

to cancellations in the addition operation, and the order may be reduced by

division or di�erentiation. A well known example is sin(tan(x))� tan(sin(x)),

which has to be expanded in Maple up to order eight to get one signi�cant

term. If one decides after looking at the result that more terms are needed, the

whole series computation has to be restarted from the beginning. The search

for the leading term of a series is thus usually done by subsequently computing

the series up to the order 1, 2, 3, etc., until the result �nally contains at least

one non zero term.

The advantage of the truncated power series approach is that e�cient algo-

rithms exist to perform the series arithmetic. Multiplication of two Taylor

series (over certain coe�cient �elds) of order n for example can be done with

O(n lnn) coe�cient multiplications using the fast Fourier transform (FFT).

Division can also be performed with the same complexity using Newton's

method [48]. Provided that this fast arithmetic is available and that every

series operation on series with n terms can be performed with O(n logn) co-

e�cient operations the sequential search for the leading term of a series uses

O(
P
m

n=1 n logn) = O(m2 logm) coe�cient operations if we have to compute

m series approximations to get a non trivial term.

7.1 Series Computation 99

The asymptotic behaviour can be improved if we double the approximation

order after every failure when looking for the leading coe�cient. Then the

overall asymptotic cost for computing the leading term is O(m lnm) with

the fast arithmetic. However, if the fast multiplication is not available, then

O(m2) operations are needed to get the leading coe�cient.

Another disadvantage of the truncated power series approach, besides the

a priori speci�cation of the truncation order, is the complexity of the code

for the series operations. If the domain of the exponents is not enumerable,

then an e�cient coding of the multiplication operation, for example, is rather

complicated.

7.1.1.2 In�nite Power Series

The second approach is to use in�nite power series instead of truncated ones.

With this model one creates power series, performs various operations on

them and at the end asks for any number of terms of the result. With this

approach one overcomes the di�culty that the number of terms which have

to be computed is often not known in advance. Terms are only computed if

they are needed. Unnecessary work is prevented.

In�nite series are traditionally represented by a rule which allows one to gen-

erate the terms as necessary. Operations on these series will generate new

series whose rules are constructed out of the old ones. The rule may, for ex-

ample, be a function f : IN ! C from the natural numbers to the coe�cient

domain C to generate the n'th coe�cient (provided that the set of exponents

is enumerable) or the n'th term. Another possibility is to represent an in�nite

series as an ordered pair consisting of the leading term (coe�cient and expo-

nent) and of a rule to generate the rest of the series as another ordered pair. If

in either case the rule is represented as an expression, then obviously it must

not be evaluated but rather be held in an unevaluated form. This technique

of evaluating an expression only when it is needed is called lazy evaluation.

Its fundamental idea is to construct a value when it is to be used rather than

when it is de�ned.

For both representations it is necessary to have on-line algorithms for manip-

ulating series, i.e. algorithms which produce the terms of the series one by one

and in order, and which do not require the number of terms to be speci�ed in

advance. Knuth [44, Section 4.7] presents a few on-line algorithms for power

series. Various implementations of in�nite Taylor series have been described

in the literature. The function model is used in [56, 34] and the lazy evalu-

ation model in [14, 91, 2, 50]. Many series operations have extremely simple

on-line algorithms if in�nite series are implemented using lazy evaluation.

The asymptotic behaviour of the run time of these algorithms is normally

worse than that of the explicit approach. Most of the on-line algorithms use

O(n2) coe�cient operations to compute terms up to order n. Semi on-line

algorithms, which may double the number of terms on demand, have a better

100 7. Implementation

run time behaviour. They are normally also based on Newton's algorithm. In

our context of computing limits this sub-optimal e�ciency is not a problem,

since we are only interested in the leading coe�cient of a power series and

hence this approach is about as e�cient as the explicit approach based on the

e�cient arithmetic.

The in�nite power series approach has one major problem: it is not possible

to decide in general whether a series is zero or not. If it is zero, then the search

for the �rst nonzero coe�cient may not terminate. This operation is needed

when computing the inverse or the logarithm of a series. However, it is an

error in these two cases if the argument is zero, and an in�nite loop may hence

be a tolerable outcome. In our context of computing limits this problem is not

an issue. We postulated an oracle for deciding zero equivalence of expressions

anyway, and hence one can assert at the time a series is generated that it is

non-zero and thus contains at least one non-trivial term.

In the remaining part of this section we describe an implementation of in�nite

general sparse power series in Maple using the lazy evaluation approach.

7.1.2 Lazy Evaluated General Sparse Power Series in Maple

To simulate delayed evaluation in Maple we use the new uneval type1 which

may be speci�ed for parameters of procedures. If a formal parameter has

this type speci�cation, then the actual argument is not evaluated when the

procedure is called. We use this feature for representation purposes only

and de�ne a procedure lazyseries which returns unevaluated. It is similar

to an unevaluated function call, with the only di�erence that the second ar-

gument is not evaluated. A power series is thus represented as an object

lazyseries(head; tail; x) where head is the �rst term of the series, tail the de-

layed rest of it which, when evaluated, generates an object of the same type,

and x is the expansion variable. Terms are represented as lists consisting of

the coe�cient and of the corresponding exponent. The evaluation of the tail

of a power series can be enforced using the eval command. Additionally, we

de�ne the constructor MakeSeries and the selectors Head, Tail2 and Var. The

empty series is represented by the special symbol NIL.

> lazyseries := proc(Head, Tail:uneval, x:name) 'procname(args)' end:

> MakeSeries := proc(Head, Tail:uneval, x:name) lazyseries(args) end:

> Head := proc(p) op(1,p) end:

> Tail := proc(s) option remember; eval(op(2,s)) end:

> Var := proc(p) op(3,p) end:

If a facility such as uneval is not available (as in older versions of Maple),

delayed evaluation can be simulated using procedures. The evaluation of an

expression expr is delayed by the construct () �> expr and evaluation can be

1Available since Release 4 of Maple V.
2The reason for the option remember will be explained later.

7.1 Series Computation 101

enforced by executing this procedure. This approach is used in the Maple

implementation of in�nite streams described in [34].

As an example let us de�ne the power series for ex. We �rst de�ne a procedure

expfrom(n; x) which constructs the power series of ex starting with the n'th

term. The �rst term of the series of expfrom(n; x) is xn=n! and its tail is the

power series of ex starting with the n+ 1'th term.

> expfrom := (n, x) -> MakeSeries([1/n!, n], expfrom(n+1, x), x):

We then de�ne the power series for ex which simply is expfrom(0; x). Notice

that its evaluated tail is again a power series object starting with the term

x and containing another unevaluated tail. The procedure PrintSeries prints

the series in a conventional notation.

> e := expfrom(0,x);

e := lazyseries([1; 0]; expfrom(1; x); x)

> Tail(e);

lazyseries([1; 1]; expfrom(2; x); x)

> PrintSeries(e);

1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +O

�
x
6
�

A simple and useful construct for the manipulation of power series is the

mapping of a function over all terms of a given series. Applications of such

a map function are the operations Scale and Shift which multiply a series by

a constant or by a power of the expansion variable respectively3 . Similarly,

integration (Int) and di�erentiation (Di�) of power series can be implemented.

> Map := proc(f, p)

> if p = NIL then NIL

> else MakeSeries(f(Head(p)), Map(f, Tail(p)), Var(p))

> fi

> end:

> Scale := proc(c, p) local t; Map(unapply([c*t[1],t[2]],t), p) end:

> Shift := proc(n, p) local t; Map(unapply([t[1],n+t[2]],t), p) end:

> PrintSeries(Shift(-1, Scale(120, e)));

120
1

x

+ 120+ 60x+ 20x2 + 5x3 + x
4 +O

�
x
5
�

Next we de�ne an on-line program to add two power series which may con-

tain arbitrary real exponents. For comparing the exponents we use Maple's

signum function as an oracle. Note that if the two leading exponents of the

arguments are equal then the new coe�cient which is generated may be zero.

3We use the unapply construct in the de�nitions for Scale and Shift since Maple does
not support nested lexical scopes. If it did, then e.g. Scale could be de�ned as

> Scale := (c, p) -> Map(t -> [c*t[1],t[2]], p):

102 7. Implementation

If we enforced a sparse representation, the sum of the two tails would need

to be returned in this case. This however is dangerous and may lead to in�-

nite loops. For example, if the exponent of the second term of the series for

s = cos2(x) + sin2(x) were inspected, the addition routine would enter into

an in�nite loop, since the sum of all corresponding coe�cients is zero. As

a consequence we allow zero terms to appear in a series, but the exponents

must still be strictly increasing. A positive side e�ect of this approach is that

the potentially expensive test for zero equivalence is delayed until it is really

needed.

> Add := proc(f, g)

> local hf, hg, s, x;

> if f = NIL then g

> elif g = NIL then f

> else ASSERT(Var(f) = Var(g));

> hf := Head(f); hg := Head(g); x := Var(f);

> s := signum(0, hg[2] - hf[2], 0);

> if s = 1 then MakeSeries(hf, Add(Tail(f), g), x)

> elif s = -1 then MakeSeries(hg, Add(f, Tail(g)), x)

> elif s = 0 then

> MakeSeries([hf[1] + hg[1], hf[2]], Add(Tail(f), Tail(g)), x)

> else ERROR(`Oracle cannot compute the sign of `, hg[2]-hf[2])

> fi

> fi

> end:

The second arguments toMakeSeries in the procedure Add are recursive calls,

but since the evaluation thereof is delayed they do not lead to in�nite recur-

sions.

The multiplication of two power series can be de�ned recursively as well. Let

f(x) = f0 x
d0 + F (x) and g(x) = g0 x

e0 + G(x), then

f(x) � g(x) = f0 g0 x
d0+e0 + f0 x

d0
G(x) + g0 x

e0
F (x) + F (x) �G(x):

Only the multiplication between F (x) and G(x) is a recursive call. The other

multiplications are shifts and scalings. Also, the addition between the leading

term and the rest is not a series addition, but rather a series concatenation.

> Mult := proc(f,g)

> local hf, hg, f0, g0, d0, e0;

> if f = NIL then NIL

> elif g = NIL then NIL

> else ASSERT(Var(f) = Var(g)):

> hf := Head(f): hg := Head(g):

> f0 := hf[1]; g0 := hg[1]; d0 := hf[2]; e0 := hg[2];

> MakeSeries([f0*g0, d0+e0],

> Add(Add(Scale(f0, Shift(d0, Tail(g))),

> Scale(g0, Shift(e0, Tail(f)))),

> Mult(Tail(f), Tail(g))

>),

> Var(f)

>)

> fi

> end:

7.1 Series Computation 103

One problem with this de�nition is the normal order reduction of expressions

which is implied by the lazy evaluation. For example, the expressions Tail(f)

and Tail(g) will be executed twice if the tail of a product is evaluated. This

may have bad consequences if the evaluation of the tail of f or g is very

expensive. In order to prevent multiple evaluations of the tail of a series, we

save all ever computed results in the remember table of the procedure Tail by

adding option remember to it4. Access to elements in the remember table can

be done in Maple in constant time. In order to prevent the remember table

from getting �lled up, it is cleared whenever a new function is expanded into

a series. If we assume that the power series f(x) and g(x) have already been

computed up to n terms, i.e. if the n � 1 tails can be computed in constant

time, then the cost for multiplying f(x) and g(x) up to n terms is O(n2).

7.1.3 Fixed Point De�nitions

It is by now a classic exercise ([44, Exercise 4.7.4] and [2, Exercise 3.49]) to

compute power series for elementary functions which satisfy a simple di�er-

ential equation. The on-line program may be derived directly from the corre-

sponding de�ning integral equation. For example, the exponential function is

de�ned by the equation

e

s(x) = e

s(x0) +

Z x

x0

e

s(t) ds(t)

dt

dt: (7.5)

The following procedure for computing the exponential es(x) at x0 = 0 is

almost a one to one translation of equation (7.5).

> Exp := proc(s) local h, s0;

> h := Head(s);

> if h[2] > 0 then s0 := 0 else s0 := h[1] fi;

> MakeSeries([exp(s0), 0], Int(Mult(Exp(s), Diff(s))), Var(s))

> end:

> PrintSeries(Exp(MakeSeries([1,1], NIL, x)));

1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +O

�
x
6
�

Notice that in the de�nition of the tail of es the expression es is recursively

used. To prevent the procedure Exp from being called recursively with the

same arguments, we could add option remember to it. A better solution would

be to substitute the expression Exp(s) in the de�nition by the result itself, i.e.

to \hard code" this recursion.

From another point of view one can also say that es(x) is de�ned as the �xed

point of the equation (7.5). The concept of de�ning a power series as a �xed

point of a mapping from the set of power series onto the set of power series

can also be o�ered as a construct by itself. Obviously, not all mappings will

4See the de�nition of Tail on page 100.

104 7. Implementation

generate a power series. Only mappings which do not perform operations

on their argument, but rather simply include it in a new structure which is

returned as the value of the map, can be used. Moreover, the leading term

of the result must not depend on the argument, as otherwise the power series

cannot be \bootstrapped". The idea of such a �xed point operator has �rst

been mentioned in [14, 91].

The implementation of a �xed point operator inMaple is rather trivial. The

map F is simply applied to a local, anonymous power series p. The result

is then assigned to p, thus producing the �xed point, or, in other words,

automatically hard-coding the recursion.

> FixedPoint := proc(F:procedure) local p;

> p := F(p)

> end:

This simple implementation presumes that no procedure working on power

series tests whether the argument is a power series object. The implementa-

tion would otherwise have to be slightly more complicated. Furthermore, the

procedure should assert that the leading term of p does not depend on p itself.

Let us de�ne the power series for ex and for sin(x) at x = 0 using the �xed

point operator de�ned above. The series of ex is de�ned as the series whose

zero-order term is e0 = 1 and whose higher-order terms are given (recursively)

by the integral of the series for ex. A similar statement holds for sin(x).

> FixedPoint(e -> MakeSeries([1,0], Int(e), x));

lazyseries([1; 0]; Int(p); x)

> PrintSeries(");

1 + x+
1

2
x
2 +

1

6
x
3 +

1

24
x
4 +

1

120
x
5 +O

�
x
6
�

> FixedPoint(sin -> MakeSeries([1,1], Int(Int(Scale(-1,sin))), x));

lazyseries([1; 1]; Int(Int(Scale(�1; p))); x)
> PrintSeries(", 5);

x� 1

6
x
3 +

1

120
x
5 � 1

5040
x
7 +

1

362880
x
9 + O

�
x
11
�

The p in the unevaluated parts of both results refers to the whole series itself.

It is an exported local name and thus unique. If p were not unique, then the

�xed point operator would not work as stated above.

The procedure to compute the exponential of a series looks similar. Addition-

ally, if the leading exponent of the argument is negative, then the sign of the

leading coe�cient has to be computed. If it is zero, the exponential of the tail

of the argument is computed, otherwise an error is issued. This is an example

where a zero test must be performed during a series expansion.

7.1 Series Computation 105

Not all �xed point de�nitions need to be based on integration. As an example

we present a �xed point de�nition of power series division which is based on

power series shifting, although multiplication and division have nice integral

based �xed point de�nitions, namely

f(x) � g(x) = FixedPoint

�
p! f(0) � g(0) +

Z
p �
�
f
0(x)

f(x)
+
g
0(x)

g(x)

�
dx

�

f(x)=g(x) = FixedPoint

�
q! f(0)=g(0) +

Z
q �
�
f
0(x)

f(x)
� g

0(x)

g(x)

�
dx

�
;

provided that f(0) 6= 0 and g(0) 6= 0. This condition can easily be established

by shifting f(x) and g(x). Notice the nice symmetry between the multiplica-

tion and the division! However, the �xed point de�nition for the division we

give next is more e�cient. Let f(x) = f0 x
d0+F (x) and g(x) = g0 x

e0+G(x),

then

f(x)=g(x) = FixedPoint

�
q! f0

g0

x
d0�e0 +

1

g0

x
�e0(F (x)� G(x) � q)

�
:

An implementation of this rule is presented below. Since Maple does not

support nested lexical scopes, the desired behaviour must be simulated by

substituting global names with the actual local values.

> Divide := proc(f, g)

> local hf, hg;

> if g = NIL then ERROR(`division by zero`)

> elif f = NIL then NIL

> else ASSERT(Var(f) = Var(g)):

> hf := Head(f): hg := Head(g):

> FixedPoint(subs(['f0'=hf[1],'g0'=hg[1],'d0'=hf[2],'e0'=hg[2],

> 'F'=f,'G'=g],

> q -> MakeSeries([f0/g0, d0-e0],

> Scale(1/g0,

> Shift(-e0,

> Add(Tail(F), Scale(-1, Mult(Tail(G), q)))

>)

>),

> Var(F)

>)

>))

> fi

> end:

As a �nal example let us compute the power series expansion of (7.3) using

the in�nite general power series facility we have just presented.

> ln(w) := -ln(3)*x:

> Series(exp((ln(1/w+(1/w)^(ln(5)/ln(3))))/x), w);

106 7. Implementation

lazyseries([5; 0];

Int(Mult(p;Di�(

lazyseries([ln(5); 0];

Scale(1=x;Tail(

lazyseries([ln(5)x; 0];

Int(Mult(Di�(P); Inv(P)));

w)));

w))));

w)

The small p comes from the �xed point de�nition of the exponential and

stands for the whole series, whereas the capital P comes from the �xed point

de�nition of the logarithm and stands for the series of the argument of the

logarithm.

> PrintSeries(Map(t -> [normal(t[1]),t[2]], "), 3);

5 + 5
w

ln(5)

ln(3)
�1

x

� 5

2

(x� 1)w
2
ln(5)

ln(3)
�2

x
2

+O

�
w

3
ln(5)

ln(3)
�3
�

Notice that the result of the series construction already contains the leading

coe�cient of the result, which is the only information we need in the context

of computing limits. The simpli�cation of the coe�cients has only been done

to get the same result as in (7.4).

It is a nice feature of this lazy evaluation implementation that although the

routines work for power series with arbitrary real exponents, this fact has to

be respected by the addition operation only when comparing the exponents

(besides of some elementary functions which have to check the sign of the

leading exponent of the argument). The code can thus be made very generic

and can be parameterized by the coe�cient domain of the power series as well

as by the set of exponents.

The �rst power series facility based on a lazy evaluation scheme is described

by Norman [56]. It was implemented in Scratchpad, the predecessor of the

computer algebra system Axiom. Further descriptions of this implementation

and in particular of the �xed point operator can be found in [14, 91]. A

Lisp implementation of in�nite streams is presented in [2]; this has also been

adapted for Mathematica [50]. Delayed evaluation for streams was already

introduced into Lisp in 1976 [24]. The Lisp dialect Scheme has delay and

force commands to simulate delayed evaluation, whereby the results of force

are memorized, i.e. remembered. Delayed evaluation was also inherent in

Algol 60's call by name parameter passing mechanism [45]. An example of a

language with full lazy evaluation is Miranda [52].

7.2 Zero Recognition

As we have discussed in Section 5.3 we have to postulate an oracle for decid-

ing zero equivalence to solve the limit computation problem. We have also

7.2 Zero Recognition 107

seen that this problem can be solved for some function classes. For others,

probabilistic methods may be used. From an implementation point of view,

the question appears to be how to incorporate these techniques for deciding

zero equivalence into a computer algebra system. The question in particular

is where the decision is made about which test is applied for a given function.

Many approaches to answer this question have been tried (see also [33]).

Maple, and other computer algebra systems like it, all have a general rep-

resentation for mathematical formulas called expressions. All these systems

provide a built in simpli�er which is automatically applied to every expression

created. But, since simpli�cation is expensive in general, not all simpli�cations

are done automatically, and this is a potential source for problems. Many er-

roneous result returned from a computer algebra system are caused by a zero

which was not recognized as such. Consider the following limit taken from [5].

lim
!!0

!p
1 + ! sin2 x+

p
1� ! cos2 x� 1

(7.6)

Derive returns the correct result 2=(1� 2 cos2 x), which can be found after

one application of l'Hôpital's rule. Let us look how the computer algebra

systems Maple, Mathematica, Macsyma, Axiom and Reduce behave on

this example:

Maple V Release 3:

> limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w=0);

0

Mathematica 2.2:

In[1]:= Limit[w/(Sqrt[1+w]Sin[x]^2+Sqrt[1-w]Cos[x]^2-1), w->0]

Out[1]= 0

Macsyma 418.1:

(c1) limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w, 0);

(d1) 0

Axiom 2.0:

(1) ->limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w=0)

(1) 0
Type: Union(OrderedCompletion Expression Integer,...)

Reduce 3.6:

1: limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w, 0);

0

108 7. Implementation

The problem encountered here is that none of the systems have recognized

sin2 x + cos2 x � 1 to be zero. Reduce and probably Macsyma reduce the

problem to the expression !=(sin2 x+cos2 x�1) using Lemma 2.4 and decide

(erroneously) that the result is zero; the other systems, which are based on

series expansion, compute the strange Taylor series

1

sin2 x+ cos2 x� 1
! � sin2 x� cos2 x

2(sin2 x+ cos2 x� 1)2
!
2 + O(!3) (7.7)

and conclude from the leading term that the limit is zero.

The problem (7.6) appears as a sub-problem when computing the limit

lim
x!+1

e
�x

p
1 + e

�x sin2(1=x) +
p
1� e

�x cos2(1=x)� 1
(7.8)

with our algorithm, but only Mathematica and Maple V Release 3 re-

turn (the wrong result) 0 for this example, all other systems either return

unevaluated or \fail" or run forever. For illustration purposes we took the

simpler problem (7.6). Maple V Release 4 however returns the correct result

of limit (7.8). It is the limit of the leading coe�cient 2=(1�2 cos2(1=x)) which

is obtained if the argument of (7.8) is expanded in terms of e�x.

> limit(exp(-x)/

> (sqrt(1+exp(-x))*sin(1/x)^2+sqrt(1-exp(-x))*cos(1/x)^2-1),

> x=infinity);

�2

One approach to solve this zero recognition problem in general is to make

the built in automatic simpli�er very powerful, in particular powerful for the

recognition of zeros. This solution turns out to be very ine�cient. Moreover,

the simpli�er must always �rst analyze the input expression to decide which

simpli�cation rules have to be applied. It must also know which rules are

available, which is a serious problem when we consider extending the system.

Some computer algebra systems o�er all kinds of options and ags that al-

low the user to tell the simpli�er how to do things di�erently. To solve the

limit (7.6) in Macsyma, one might automatically convert all trigonometric

expression into exponential form and explicitly use the limit algorithm which

is based on Taylor series (tlimit). Since all the trigonometric functions are

converted to exponential form, the hidden zero is detected by the automatic

simpli�er through an application of the expand function.

(c2) exponentialize:true$

(c3) tlimit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w, 0);

2 %i x
4 %e

(d3) - ------------

4 %i x

7.2 Zero Recognition 109

The Reduce system has a global simpli�er which is applied automatically

and whose behaviour can be modi�ed by setting ags and by de�ning new

simpli�cation rules.

2: for all x let sin(x)^2+cos(x)^2=1;

3: limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w, 0);

2

2
2*sin(x) - 1

Both solutions are unsatisfactory as there is no protection from getting wrong

results. The chance of getting a correct one depends on the user's knowledge

about the ags o�ered by the system and on the user's intuition about which

ags are needed to solve a particular problem correctly. If a limit is computed

within a larger computation, the user has no chance to �gure out where to

support the system as he does not see which expression was not recognized to

be zero.

Most systems o�er very powerful simpli�cation routines in addition to the gen-

eral purpose simpli�er. For example, in Maple there is a procedure radsimp

to simplify expressions containing radicals, and many other special purpose

simpli�cation routines. As it is too expensive to apply all available simpli-

�cation routines on every expression, Maple supports a parameterized zero

equivalence testing approach. Whenever the system has to decide whether an

expression is zero, the procedure Testzero is called. This is an environment

variable which is initially set to normal(x) = 0 (normal is Maple's simpli�er

for rational functions), but which may be overwritten by an arbitrary func-

tion which returns a boolean result. (Since Maple may remember previously

computed results, we must restart a new session to show how it works).

> restart;

> Testzero := e -> evalb(normal(convert(e, exp)) = 0):

> limit(w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1), w=0);

2

sin(x)2 � cos(x)2

Macsyma allows one to overwrite the simpli�er which is used when comput-

ing a Taylor series by assigning the variable taylor simpli�er. The problem

with these approaches is still that success depends on the power of the simpli-

�er being used. If the simpli�er is not able to recognize a zero, wrong answers

may be returned, and, furthermore, without any indication that they may be

wrong! At least, the Maple approach allows one to install a Testzero proce-

dure which issues a warning when zero equivalence cannot be decided. The

user would then get at least an indication that the result could be wrong. Un-

fortunately, not allMaple library functions make use of the Testzero facility.

110 7. Implementation

> restart;

> Testzero := proc(e) option remember; local t;

> t := testeq(e) or (Normalizer(e) = 0);

> if t = FAIL then t := false;

> printf(`%a is assumed to be non zero\n`, e)

> fi;

> t

> end;

> limit(w/((1+w)*2^(1/4)*(2^(1/2)+2)-(8+6*2^(1/2))^(1/2)), w=0);

2*2^(1/4)+2^(3/4)-(8+6*2^(1/2))^(1/2) is assumed to be non zero

0

As the expression Maple has claimed to be nonzero is in fact identically zero,

the result of this computation is wrong. The correct result can be found by

assigning an improved zero test to Testzero.

> restart;

> Testzero := e -> evalb(readlib(radnormal)(e)=0):

> limit(w/((1+w)*2^(1/4)*(2^(1/2)+2)-(8+6*2^(1/2))^(1/2)), w=0);

1

2

23=4p
2 + 2

The most convincing solution is called the domain based approach. The idea

is that the procedures to compute e.g. power series over a �eld F are param-

eterized by a collection of functions implementing the operations which can

be performed in every �eld, and in particular also a (zero) equivalence test.

Such a collection is called a domain. This idea has been pioneered by the

Axiom [40] system and has been adopted by systems such as Gauss5 [53] and

others [1, 96].

Every domain, e.g. the one for elementary functions, can o�er the best test

for zero equivalence. If the system is extended with a new domain, the special

knowledge about zero recognition enters into the domain de�nition and no

central simpli�er needs to be updated.

Although Axiom seems to use this approach, the result on the limit (7.6)

is wrong. The reason is, that the procedure zero? de�ned in the domain

Expression, to which sin2 x+cos2 x�1 belongs, is not a strong zero equivalence
tester. This means that the answer from zero? that a function is non-zero may

be wrong. A better test could be obtained if the expression which is tested

for zero equivalence is �rst normalized. For that purpose we have de�ned our

own domainMyExpression (MYEX) which overwrites the two methods zero?

and = from the Expression domain. All the other operations are inherited

from the domain Expression

(1) ->w/(sqrt(1+w)*sin(x)^2+sqrt(1-w)*cos(x)^2-1) :: MYEX INT;

Type: MyExpression Integer

5Gauss is implementd on top of Maple as a package called Domains.

7.3 The Properties of ! 111

(2) ->limit(%, w=0)

2
(2) -----------------

2 2
sin(x) - cos(x)

Type: Union(OrderedCompletion MyExpression Integer,...)

This problem will hopefully be �xed in a future version of Axiom.

7.3 The Properties of !

Whenever a series is computed in terms of !, the domain of computation

is extended by the symbol ! and the system has to be tought about the

special properties of !. In particular this is the property that ln! is equal to

the argument of the exponential !. If this information is not passed to the

system, then hidden zeros may remain unrevealed. Consider

lim
x!+1

ln

�
1� ln(e

x

x
�1)+ln(x)

x

�
x

: (7.9)

The most rapidly varying subexpression is ex, which is replaced by !�1. This

implies that ln! = �x. The series expansion of the argument of (7.9) at

! = 0 is

> PrintSeries(Series(ln(1-(ln(1/w/x-1)+ln(x))/x)/x, w), 1);

ln

�
1 +

ln(w)�ln(1x)�ln(x)

x

�
x

+O (w)

When we look at the leading coe�cient of this series and keep in mind that

ln! = �x and that x is real and positive, i.e. that ln(1=x) = � ln(x), then

we see that the argument of the logarithm is zero, and that this series is

not de�ned. In order to compute the correct result, we have to pass the

knowledge about ln(!) into the series computation facility, in particular into

the zero recognizing tool.

InMaple, we could rede�ne the Testzero environment variable which is called

within the Series facility to perform the necessary transformations. The so-

lution we chose for our implementation is to store the values of ln(!) and

ln(1=!) into the remember table of ln directly.

> ln(w) := -x: ln(1/w) := x:

> Testzero := e -> evalb(normal(e,expanded)=0):

> PrintSeries(Series(ln(1-(ln(1/w/x-1)+ln(x))/x)/x, w), 2);

�1 + 1

2
w + O

�
w
2
�

The unknown ! must obviously not be a global name, for the limit code would

otherwise not be reentrant! The result of (7.9) turns out to be �1.

112 7. Implementation

7.4 Branch Cuts

If we extend the problem domain from the real axis onto the complex plane,

then we must be careful, since many standard functions become multi-valued.

Familiar examples are

p
z; ln z; arcsin z; arccos z; arctan z; arcsinh z; arccosh z; arctanh z; z1=n:

These functions cannot be de�ned continuously on the complex plane. It

is conventional in computer algebra systems to represent these functions as

single-valued functions by choosing arbitrary lines of discontinuity, which are

also called branch cuts. Branch cuts begin and end at branch points. They

are singularities around which neither branch of the function can be repre-

sented by a Taylor nor by a Laurent series expansion. As a consequence,

these single-valued functions are normally not analytic throughout the whole

complex plane; rather, they have discontinuities across their branch cuts, but

they sill may be tractable. For example, the conventional branch cut for the

complex logarithm functions lies along the negative real axis [3, (4.1.1)]. As

a consequence, lim
x!0+

ln(�1 + x i) = �i and lim
x!0+

ln(�1� x i) = ��i.

Most computer algebra systems just ignore the existence of branch cuts when

computing series expansions and return results which are only valid in cer-

tain regions of the complex plane. As an example we show the Taylor series

expansion of such a function on its branch cut in Macsyma.

(c1) taylor(sqrt(-1+x),x,0,2);

2
%i x %i x

(d1)/T/ %i - ---- - ----- + . . .

2 8

This result is only valid on one side of the branch, namely if the imaginary

part of x (=x) is greater or equal to zero, but the system gives no indication

that the result is only valid under this proviso. As a consequence, a limit

computation based on this series facility may be wrong as well.

(c2) limit(sqrt(-1-x*%i), x, 0, plus);

(d2) %i

Note that almost all computer algebra systems return an incorrect result on

the above limit problem. A notable exception is Derive.

We have solved that particular problem by using a sign function for complex

expressions within the coe�cients of a series. This sign function is named

csgn in Maple and de�ned as follows:

csgn(x) =

8<
:

1 if <x > 0 _ (<x = 0 ^ =x > 0)

�1 if <x < 0 _ (<x = 0 ^ =x < 0)

0y if x = 0

7.4 Branch Cuts 113

With the help of that function the series may be formulated depending on the

location of the expansion variable relative to the branch cut. Note that only

straight branch cuts can be resolved with this technique. The series model of

Maple allows the coe�cients to depend on the expansion variable x, if their

growth is less than polynomial in x. This condition is satis�ed, since csgn(x)

is piecewise constant. As a side e�ect, Maple6 also knows that the Taylor

series expansion on a branch cut does not exist, since the coe�cients of Taylor

series must not depend on the expansion variable.

> taylor(sqrt(-1+x*I), x = 0);

Error, does not have a taylor expansion, try series()

> series(sqrt(-1+x*I), x = 0, 2);

e
�1=2 I csgn(I (�1+I x)) � � 1

2
I e

�1=2 I csgn(I (�1+I x)) � + O

�
x
2
�

Note that even if only straight branch cuts are involved, the series approxi-

mation generated by an inaccurate series facility is not only wrong \half of

the time", but rather this problem may accumulate as the following example7

shows.

> Ez := (z-I)/((z-I)^2)^(3/2) + (z+I)/((z+I)^2)^(3/2):

> series(Ez, z=0, 2);�
�I e3=2 I csgn(I (z2�2Iz�1))� + I e

3=2 I csgn(I (z2+2Iz�1))�
�
+�

�2 e3=2 I csgn(I (z2�2Iz�1))� � 2 e3=2I csgn(I (z2+2Iz�1))�
�
z +O

�
z
2
�

Within this answer four results for di�erent regions are encoded, depending

on the choice for z, i.e. the choices for the csgn values, namely

�2 +O(z2) for <z > 0 ^ (�1 < =z � 1)

2 +O(z2) for <z < 0 ^ (�1 � =z < 1)

4i z +O(z2) for (<z > 0 ^=z � �1) _ (<z < 0 ^ =z � 1)

�4i z +O(z2) for (<z > 0 ^=z > 1) _ (<z < 0 ^=z < �1) _ <z = 0

(7.10)

All systems which return a result for this series expansion8 return the one

which is only valid in the last region speci�ed in (7.10), e.g. in Macsyma we

get

(c1) taylor((z-%i)/((z-%i)^2)^(3/2)+(z+%i)/((z+%i)^2)^(3/2),z,0,3);

3

(d1)/T/ - 4 %i z + 8 %i z + . . .

yThe value at x = 0 is arbitrary de�ned to be zero. This de�nition may be changed

using the environment variable Envsignum0.
6Since Release 4 of Maple V.
7The example is taken from [5] where the limit of EZ for r = 0 is discussed.
8Axiom 2.0, Macsyma 418.1, Maple V Release 3 and Mathematica 2.2.

114 7. Implementation

If we additionally considered the region of convergence for this series, then the

result would be even worse, because the series only converges for the �rst two

regions in (7.10) and for the last region, if z is on the imaginary axis only.

The algorithm which computes the leading term must be prepared for the

situation that the coe�cients may contain sign functions. It must resolve

them by inspecting the limiting behaviour of their argument. Moreover, the

zero equivalence test which is called within series may get a function which

contains csgn functions, which must be resolved. As an example consider

lim
x!+1

1

x

�
1 + (1=x� 1)1=x�1

� (7.11)

which can be rewritten in terms of exponentials and logarithms. After moving

up one level in the scale, the series of !=(1+ exp(ln(!� 1) (!� 1))) has to be

computed. If we take into account, that the series expansion is done on the

branch cut and that the coe�cients may depend on the csgn function, then

we get the following result with Maple's series command

> series(w/(1+exp(ln(w-1)*(w-1))),w,2);

1

1 + e
I csgn(I (w�1))�

w +O

�
w
2
�

Note that the denominator of the leading coe�cient is zero most of the time,

except for ! = 1, in which case the value of the leading coe�cient depends on

the de�nition of csgn(0). On the other hand, we know that ! tends to zero

and so the series is meaningless, since again a zero has not been recognized.

We see two ways to resolve this problem in Maple. One possibility would be

to extend the assume facility in Maple [92] with a new property Arbitrary-

Small and to extend the whole system to consider this property. The function

csgn(I (w�1)) should then automatically simplify to �1 if w has this property.

Since this would need an update of the whole library, it is a rather unpractical

approach.

The solution we have implemented is again to put this extra information

about ! into the zero equivalence test by overwriting the environment variable

Testzero. If the function which is passed to Testzero contains sign functions

which depend on the expansion variable !, then these sign functions are re-

placed by their limits as ! goes to 0+ before the function is tested for zero

equivalence.

> restart;

> Testzero := proc(e) local e1;

> if has(e,w) then e1 := limit(e,w=0,right)

> else e1 := e

> fi;

> evalb(normal(e1) = 0)

> end:

7.5 Computing with Parameters 115

For the above expression we now obtain the following series:

> series(w/(1+exp(ln(w-1)*(w-1))),w,2);

1

e
I csgn(I (w�1))� (�I csgn(I (w � 1))� + 1)

+ O (w)

If the sign functions in the leading coe�cient of this series are replaced by �1
we get the expression �1=(i � + 1) which is the result of (7.11).

To close this section we give some other examples of directional limits on

branch cuts which are solved correctly with our series model.

> Limit(sqrt(-1+x*I), x=0, left) = limit(sqrt(-1+x*I), x=0, left),

> Limit(sqrt(-1+x*I), x=0, right) = limit(sqrt(-1+x*I), x=0, right);

lim
x!0�

p
�1 + I x = �I; lim

x!0+

p
�1 + I x = I

> limit(arctan(2*I+x), x=0, left), limit(arctan(2*I+x), x=0, right);

�1

2
� +

1

2
I ln(3);

1

2
� +

1

2
I ln(3)

7.5 Computing with Parameters

Another general source of bugs in computer algebra algorithms is when a result

depends on certain conditions which must be met by the involved parameters.

Some computer algebra systems either return a result which may become

wrong on specialization, or refuse to compute anything. We again take an

example out of [5].

> V := 1/sqrt(r^2+(z-I)^2)+1/sqrt(r^2+(z+I)^2):

> Ez := -diff(V,z);

Ez :=
1

2

2z � 2I

(r2 + (z � I)2)3=2
+

1

2

2z � 2I

(r2 + (z + I)2)3=2

> limit(Ez, z=0, right);

0

This result is only correct for r � 1, not in general. Our implementation of

series gives a note to the user whenever it makes assumptions about condition

on the parameters which cannot be resolved. This way, the user gets at least

a hint that the solution returned is only valid under some provisos, but in

general this problem is not easy to solve, and a variety of approaches have

been discussed and implemented [18].

> MRV[Limit](Ez, z=0, right);

PROVISO: NOT(r^2-1,negative)

0

Once we know this, we might specify additional information about the vari-

116 7. Implementation

ables and then either get the correct result or further provisos. Assumptions

about unknowns may be speci�ed with the assume facility in Maple [92].

> assume(r^2 < 1, r, real);

> MRV[Limit](Ez, z=0, right);

� 2

(1� r~2)3=2

Such knowledge is for example needed within series, when one has to decide

whether the expansion point is on a branch cut or not, and that is also what

happened in the above example for the fractional power.

In the environment of computing limits with our approach, we may encounter

sometimes a special situation which we will discuss next. Consider the example

lim
x!+1

ln

x(x+ 1)

ln
�
e
x + e

ln2 x
e
x2
� + 1

lnx

!
: (7.12)

The most rapidly varying subexpression is ex
2

and we set ! = e
�x2 . The

series in ! of the argument of the outer logarithm in (7.12) is

1

lnx
+

x(x+ 1)

ln2 x+ x
2
+O(!)

If the series of the logarithm thereof is computed, we must compute the sign

of 1
ln x

+
x(x+1)

ln2 x+x2
in order to decide whether we are on the branch cut or

not. The sign of this function can be decided to be 1 if we know that x > 1.

Unfortunately, such a bound above which the sign can be computed is di�cult

to specify in advance. But we know that x is the variable which approaches

in�nity, and hence only the value of the sign for x! +1 is relevant. Again,

this information about the unknown x must be communicated to the sign test

which is called in the series computation facility.

Again two approaches seem to be natural for a Maple realization. First, a

new property, such as ArbitraryLarge, for the assume facility could be de�ned,

but as we have already discussed, such global changes imply that a lot of code

must be updated. The easier solution is to de�ne also an environment variable

for computing the sign of a function. If the zero equivalence test is already

o�ered as an environment variable, it seems to be natural to also o�er an

environment variable for computing the sign of an expression, since these

two tasks are related anyway. In the code in Appendix A, this environment

variable is called EnvSIGNUM.

7.6 The limit Routine in the Maple Library

In this last section we would like to add some information about the implemen-

tation of our algorithm which is available in the Maple distribution version

7.6 The limit Routine in the Maple Library 117

through the limit command. The main di�erence of this implementation with

the algorithm presented in the appendix is thatMaple's limit facility is built

on top of Maple's series function. This series model however only supports

Puiseux series, i.e. the exponents are restricted to be rationals. Real expo-

nents are converted to a rational approximation. This works �ne in most of

the cases, but examples where this simpli�cation fails can be constructed. An

example is

lim
x!+1

�
Beta(x+ e

�x
; x+ e

�x)� Beta(x; x)
�
e
(1+2 ln 2)x

p
x = �4 ln 2

p
�

which returns 0 in Maple V. The correct result is computed by our imple-

mentation which is based on a general power series facility:

> (Beta(x+exp(-x),x+exp(-x))-Beta(x,x))*exp((1+2*ln(2))*x)*sqrt(x):

> MRV[Limit](", x=infinity);

1/2
- 4 Pi ln(2)

We decided to built limit on top of the existing series facility and not to build

our own series tool, since then the limit tool can pro�t from extensions made

in the series facility. However, we hope that eventuallyMaple itself will o�er

a more general series facility.

The pre-processing step can be extended in the usual Maple manner. If

the function f needs to be pre-processed, i.e. if it contains essential singu-

larities in its domain of de�nition, then the user must supply a procedure

limit/preprocess/f. This procedure is then called from within limit with the

actual arguments of f and it has to return the pre-processed function (where

all the essential singularities are captured in exp-log functions, and all other

functions are tractable, i.e. can be expanded in a power series). The argu-

ments are passed as expressions in the variable limit/X and the limit is taken

as limit/X approaches 0 from the right.

Example 7.1 As an example we extend the system by the function ERF

which is the error function

ERF(x) =
2

�

Z x

0

e
�t2

dt:

In order to instruct Maple how to expand ERF(x) into a series, it is enough

to de�ne the derivative of ERF(x). This is done by a de�nition of procedure

di�/ERF.

> `diff/ERF` := (e,x) -> 2/sqrt(Pi)*exp(-e^2)*diff(e,x):

118 7. Implementation

Next we de�ne how to pre-process this new function. If the argument tends to

in�nity, then the function has an essential singularity which we isolate. The

tractable part is de�ned to be the function ERFs.

> `limit/preprocess/ERF` := proc(e)

> local lim;

> lim := limit(e, `limit/X`=0, right);

> if lim = infinity then 1 - ERFs(e)/exp(e^2)

> elif lim = -infinity then -1 + ERFs(-e)/exp(e^2)

> else ERF(e)

> fi

> end:

Additionally, we must instruct Maple about how to expand the tractable

part ERFs(x) into a series. The series facility of Maple is extended through

the same mechanism, i.e. also by assigning a procedure to series/ERFs. Note

that the argument of ERFs always tends to +1. Due to our model it may

happen that the series of the argument has the form c0+c1 !
e1 + � � �, with the

leading coe�cient not constant but rather tending to in�nity as well, though

less rapidly than !. As a consequence we must distinguish two cases within

the series expansion of ERFs(x).

> `series/ERFs` := proc(e, x)

> local e0, s, k;

> e0 := series(e,x);

> if not type(e0, 'series') then RETURN(FAIL) fi;

> ASSERT(op(2,e0)<=0);

> if op(2,e0) = 0 then

> s := series((1-ERF(e0))*exp(e0^2), x);

> eval(subs(ERF=(v -> 1-ERFs(v)/exp(v^2)), s));

> else # (5.17)

> series(1/sqrt(Pi)*

> sum((-1/4)^k * (2*k)! /k! /e0^(2*k+1), k=0..iquo(Order-1,2))

> + O(1/e0^Order), x)

> fi

> end:

The extension is now complete and limit knows about the new function

ERF(x). The only thing Maple does not know yet is the relation to other

Maple function in order to be able to test for zero equivalence. This can be

achieved by rede�ning Testzero accordingly.

> Testzero := subs(T=eval(Testzero), proc(e) T(subs(ERF=erf, e)) end:

> limit(exp(x)*exp(x^2)*(ERF(x+1/exp(x))-ERF(x)), x=infinity);

2p
�

{
Example 7.2 The following example is slightly more complicated and shows

how additional knowledge can be added to the limit facility through the pre-

processing transformation. We teachMaple to handle Bessel functions whose

order tends to in�nity. According to [3, (9.3.7)] we have

7.6 The limit Routine in the Maple Library 119

J�(� sech�) �
e
�(tanh���)

p
2�� tanh�

1 +

1X
k=1

uk coth�

�
k

!

for � !1 through real positive values. � is assumed to be �xed and positive.

The de�nition of the uk is given by a recursion in [3, (9.3.10)]. We can pass

this information into the limit computation by de�ning the procedure pre-

process/mrv/BesselJ. The arguments are given as expressions in the variable

limit/X, and the limit is taken for limit/X towards zero from the right side.

We directly access the procedures de�ned in the limit library code.

> alias(PreProcess = `limit/mrv/PreProcess`):

> alias(MrvLeadTerm = `limit/mrv/MrvLeadTerm`):

> alias(Sign = `limit/mrv/Sign`):

> `limit/preprocess/BesselJ` := proc(n,e)

> local lte, ltn, alpha;

> lte := MrvLeadTerm(PreProcess(e));

> ltn := MrvLeadTerm(PreProcess(n));

> if ltn[3] < 0 and lte[3] < 0 and traperror(Sign(ltn[1])) = 1 then

> # A&S [3]: 9.3.7

> alpha := arcsech(MrvLimit(PreProcess(e)/PreProcess(n)));

> alpha := convert(alpha, ln);

> if signum(0,alpha,0) = 1 then

> exp(n*(tanh(alpha)-alpha))/sqrt(2*Pi*n*tanh(alpha))*

> BesselJs(alpha,n)

> else _Range

> fi

> elif lte[3] < 0 then _Range # signal for oscillating functions

> else BesselJ(n,e)

> fi;

> end:

Together with the de�nition for series/BesselJs and after some simpli�cations

we obtain

lim
x!1

J(e2+1)x(2e x)e
2x
p
x =

1p
2�
p
e
2 � 1

:

{

120

8. Comparison

In this section we compare di�erent algorithms for computing limits which

are o�ered by the currently available computer algebra systems. Such a list of

examples is useful as a benchmark to test further limit algorithms, but it also

shows the power and the weaknesses of today's computer algebra systems.

This comparison shows in particular that some of today's commercially avail-

able computer algebra system still use methods based on the ideas presented

in Section 2.3. In particular, we tested the following limit algorithms:

MrvLimit: This is our algorithm as it is described in this thesis. We used

the version which is presented in Appendix A. It is built on the lazy

evaluated general sparse power series facility described in Section 7.1.2.

Another implementation of this algorithm is available through the limit

command in Maple V since Release 3 (cf. Section 7.6).

JSLimit: This algorithm refers to our implementation of Shackell's algorithm

to compute nested forms. The limit of a function is read o� its nested

form. Note that the implementation is restricted to exp-log functions.

glimit: This is a function out of the Maple gdev package for asymptotic

expansions written by B. Salvy [70]. glimit is using a generalized series

approach. We used the 1994 version which runs in Maple V Release

3 and which is available through ftp from ftp.inria.fr in the directory

/INRIA/Projects/algo/programs/gdev.

Mathematica: Mathematica o�ers two limit functions, one in the kernel

and one in the package Calculus/Limit.m. The kernel limit function is

based on heuristics, whereas the limit package uses a generalized series

expansion approach. The latter has been written by V. Adamchik [4]

and is a development version for the evaluation of limits which may

replace the algorithm in the kernel in the future. The limit package

is available in every Mathematica installation since Version 2.1 and

can be loaded with the command <<Calculus/Limit.m. We used the

version available in Mathematica 2.2.

Macsyma: Macsyma also o�ers two limit functions: limit and tlimit. limit

uses a heuristic approach as described in [89, 90] whereas tlimit calls limit

122 8. Comparison

with a ag indicating that Taylor series have to be used as �rst heuristic

whenever possible. We ran the tests with Macsyma Version 418.1. If

nothing special is mentioned in the footnotes, the limit command was

used.

Derive: The limit algorithm in Derive is based on heuristics. We tested

Derive Version 2.6.

Axiom: Axiom's limit function is based on a power series approach. We ran

the tests with Axiom Release 2.0a.

Reduce: The limit package of Reduce is based on heuristics. For non-

critical limits a power series approach is used, and to resolve singularities

l'Hôpital's rule is applied. A limited amount of bounded arithmetic is

also employed where applicable. This package has been implemented

by L. Kameny [42]. We tested the limit facility available in Reduce

Version 3.6.

We must admit that the test examples we choose are rather di�cult and in

particular test the behavior of the algorithms on cancellations and essential

singularities. The examples (8.1-8.8) are all examples which lead to the can-

cellation problem if the general power series algorithm is applied directly. For

the examples (8.5-8.8) this can be seen if the quotient of the two exponentials

is combined into an exponential of a di�erence. That is also the reason why

gdev and Axiom give up on most of these examples.

The example (8.9) is taken from Hardy [36]. He used it to describe the dif-

�culty of �nding an asymptotic scale. The only scale in which this function

can be expanded is a scale which contains the function itself.

The problem (8.15) has been chosen randomly and does not contain special

trapdoors. Its result is obvious. It is surprising however that most of the

systems cannot solve this problem. Finally, note that the test (8.18) has been

discussed in Example 3.21 and (8.19) in Example 3.25.

The kernel limit function of Mathematica could not solve any of the prob-

lems. It returned unevaluated for all examples, most times after an error

message indicating that an indeterminate expression of the form1�1 was

encountered. We only present the results of the Calculus/Limit.m package.

lim
x!+1

e
x

�
e
1=x�e�x � e

1=x
�
= �1 (8.1)

lim
x!+1

e

x

�
e

1=x+e�x+e�x
2

� e

1=x�e�ex
�
= 1 (8.2)

lim
x!+1

e
e
x�e�x

=(1�1=x) � e
e
x

= +1 (8.3)

123

lim
x!+1

e

e
(ex=(1�1=x)) � e

e
(ex=(1�1=x�ln(x)� ln(x)))

= �1 (8.4)

lim
x!+1

e
e
e
x+e�x

e
ee
x = +1 (8.5)

lim
x!+1

e
e
e
x

e
ee
x�e�ex

= +1 (8.6)

lim
x!+1

e
e
e
x

e
ee
x�e�ee

x = 1 (8.7)

lim
x!+1

e
e
x

e
ex�e

�eex
= 1 (8.8)

lim
x!+1

(lnx)2 e
p
ln x (ln ln x)2 e

p
ln ln x (ln ln ln x)3

=

p
x = 0 (8.9)

lim
x!+1

x lnx
�
ln
�
x e

x � x
2
��2

ln ln
�
x
2 + 2 ee

3x3 ln x

� =
1

3
(8.10)

lim
x!+1

�
e

x e
�x
=

�
e
�x+e

� 2 x2

x+1

�
� e

x

�
=x = � exp(2) (8.11)

lim
x!+1

(3x + 5x)
1=x

= 5 (8.12)

lim
x!+1

x= ln
�
x
ln xln 2= ln x

�
= +1 (8.13)

lim
x!+1

e
e
2 ln(x5+x) ln ln x

e
e10 ln x ln ln x

= +1 (8.14)

lim
x!+1

4=9
exp
�
e
5=2x�5=7+21=8x6=11+2 x�8+54=17x49=45

�8
ln
�
ln
�
� ln

�
4=3x�5=14

���7=6 = +1 (8.15)

lim
x!+1

exp(4x e�x=(1=ex + 1= exp(2x2=(x+ 1))))� e
x

(ex)4
= 1 (8.16)

lim
x!+1

exp
�

xe
�x

e�x+e�2x2=(x+1)

�
e
x

= 1 (8.17)

lim
x!+1

e
e
�x=(1+e�x)

e

� x

1+e�x=(1+e�x)
e
e
�x+e�x=(1+e

�x)

(e�x=(1+e�x))2
� e

x + x = 2 (8.18)

lim
x!+1

ln(lnx+ ln lnx)� ln lnx

ln(lnx+ ln ln lnx)
lnx = 1 (8.19)

lim
x!+1

exp

ln ln

�
x+ e

ln x ln ln x
�

ln ln ln (ex + x+ lnx)

!
= e (8.20)

124 8. Comparison

MrvLim JSLim GLimit Math Macs Derive Axiom Reduce

8.1 �1 �1 uneval �1 �1 �1 failed uneval

8.2 1 1 uneval 0 1 1 failed uneval

8.3 1 1 uneval 0 �1 1 failed uneval

8.4 �1 �1 uneval ()2 uneval ()6 failed uneval

8.5 1 1 uneval 1 1 uneval7 failed uneval

8.6 1 1 1 e
�e uneval ()6 failed ()4

8.7 1 1 1 e
�e uneval uneval7 failed ()4

8.8 1 1 1 1 1 1 failed uneval

8.9 0 0 0 1 05 uneval7 0 uneval

8.10 1=3 1=3 1=3 ()3 uneval ()6 failed uneval

8.11 �e2 �e2 0 0 uneval ()6 failed uneval

8.12 5 5 5 e 5 ()6 failed 1

8.13 1 1 1 ()2 1 1 failed 1

8.14 1 1 uneval 1 15 uneval7 1 uneval

8.15 1 1 uneval ()4 uneval ()6 ()4 uneval

8.16 1 1 1 0 1 ()6 failed uneval

8.17 1 1 1 0 1 ()6 failed uneval

8.18 2 ()1 1 0 uneval uneval7 ()4 ()4

8.19 1 1 1 1 uneval uneval7 failed uneval

8.20 e e e 1 uneval ()6 failed uneval

Table8.1. Comparing di�erent limit algorithms and packages on exp-log functions

1 The current implementationexhausts all memory on this example as the intermediate
results get too large.

2
Mathematica returns Indeterminate which represents a numerical quantity whose
magnitude cannot be determined.

3 After issuing some error messages Mathematica exits with the message Out of

memory.
4 Stopped after several hours.
5 Only when using tlimit. Macsyma returns unevaluated when using limit.
6 The problem cannot be solved and a Memory full message appears.
7 The function has been transformed into another, more complicated form.

125

It is di�cult to compare timings as the systems behave so di�erently, i.e. run

for ever or return unevaluated immediately. Maple used less than 20 seconds

on a Sun4 for the twenty exp-log examples with both implementation, i.e.

with the library version and with the version given in the Appendix.

The results on Example (8.18) are very interesting. They show that a result

may not be correct, even if it is returned by three di�erent computer algebra

systems!

The second collection of problems contains limits of functions in more di�cult

function �elds. The emphasis is again on the cancellation problem for the

�rst ten examples, on which glimit gives up, as expected. Again some of the

examples have already been discussed, namely test (8.32) in Example 5.5 and

test (8.35) in Example 5.6.

The limit function in the kernel of Mathematica could not solve any of

these limits and returned unevaluated for all of them, sometimes after error

messages indicating that an indeterminate expression was encountered or an

essential singularity was found during the series expansion of the � function.

We therefore only present the results of the Calculus/Limit.m package. This

package however seems to have many implementation bugs. We have reported

them to Wolfram Research Inc.

In order to compute these limits in Reduce, the specfunc package has to be

loaded �rst. Reduce and in particular Derive are rather poor on these

special functions in contrast to the exp-log problems. It seems that special

functions are not incorporated that well in these systems. This may be an

indication that the algorithm which is using heuristics is di�cult to extend.

The MrvLimit algorithm used here is an extension over the one presented

in the Appendix A which preprocesses functions with essential singularities.

The limit function in Maple V Release 4 returns the same results except

for the test (8.25). This problem cannot be solved as the underlying series

facility is not powerful enough and thus Maple's limit returns unevaluated.

The Maple V library version of our algorithm needed 16 seconds to solve the

special limit problems and the version based on lazy evaluated series used 35

seconds on a Sun4.

126 8. Comparison

lim
x!+1

e
x

�
sin(1=x+ e

�x)� sin(1=x+ e
�x2)

�
= 1 (8.21)

lim
x!+1

e
e
x
�
e
sin(1=x+e�e

x

) � e
sin(1=x)

�
= 1 (8.22)

lim
x!+1

(erf(x� e
�ex)� erf(x)) ee

x

e
x
2

= �2=p� (8.23)

lim
x!+1

(Ei(x � e

�ex)� Ei(x)) e�x ee
x

x = �1 (8.24)

lim
x!+1

e
(ln 2+1)x

�
�(x+ e

�x) � �(x)
�
= � ln 2 (8.25)

lim
x!+1

e
x (� (x+ e

�x)� � (x)) = +1 (8.26)

lim
x!+1

exp(� (x� e
�x) exp(1=x))� exp(� (x)) = +1 (8.27)

lim
x!+1

(� (x+ 1=� (x))� � (x))= ln(x) = 1 (8.28)

lim
x!+1

x (� (x� 1=� (x))� � (x) + ln(x)) =
1

2
(8.29)

lim
x!+1

�
� (x+ 1=� (x))� � (x)

lnx
� cos(1=x)

�
x lnx = �1

2
(8.30)

lim
x!+1

� (x+ 1)p
2�

� e
�x
�
x
x+1=2 + x

x�1=2
=12
�
= +1 (8.31)

lim
x!+1

ln(� (� (x)))=ex = +1 (8.32)

lim
x!+1

exp(exp(((x))))=x = exp(�1=2) (8.33)

lim
x!+1

exp(exp((ln(x))))=x = exp(�1=2) (8.34)

lim
x!+1

exp(exp(exp((((x))))))=x = 0 (8.35)

lim
x!+1

J2x(x) e
x (2 ln(2+

p
3)�

p
3)
p
x =

s
1

2
p
3�

(8.36)

lim
x!+1

max(x; ex)

ln(min(e�x; e�ex))
= �1 (8.37)

127

MrvLim GLimit Math Macs Derive Axiom Reduce

8.21 1 uneval 1 uneval ()8 failed uneval

8.22 1 uneval �1 uneval ()8 failed uneval

8.23 �2=
p
� uneval 0 uneval uneval ()9 uneval

8.24 �1 uneval �1 uneval4 0 ()9 uneval

8.25 � ln(2) uneval uneval1 uneval uneval ()11 uneval

8.26 1 uneval 02 uneval uneval failed ()12

8.27 1 uneval ()3 uneval uneval failed ()12

8.28 1 uneval 02 ()5 uneval failed ()12

8.29 1=2 uneval 02 ()5 uneval failed ()12

8.30 �1=2 uneval 02 ()5 uneval failed ()12

8.31 1 1 �1 �1 ()8 failed ()12

8.32 1 uneval 0 16 uneval failed ()12

8.33 e
�1=2 1

e1=2
1=
p
e uneval ()9 failed ()12

8.34 e
�1=2 1

e1=2
1=
p
e 07 ()8 failed ()12

8.35 0 uneval 1 uneval ()9 failed ()12

8.36 1
2

q
2

�
p
3

uneval uneval uneval ?10 failed uneval

8.37 �1 uneval uneval uneval uneval �1 uneval

Table8.2. Comparing di�erent limit algorithms and packages on general functions

1 After some error messages from Series.
2 After some error messages which say that a local variable in the Calculus/Limit

package does not have appropriate bounds.
3 After some error messages the empty list fg is returned as result.
4
Macsyma asks here whether exp int(inf) is positive, negative or zero. Independent
of the answer, it returns unevaluated.

5 The system error Bind stack overflow, Caught fatal error or Unrecoverable

error was issued.
6 Only when using tlimit. The limit command causes a system error.
7 Only when using tlimit. The limit command returns unevaluated.
8 The problem cannot be solved and a Memory full message appears.
9 Stopped after several hours.
10 A question mark means that the limit is unde�ned.
11

Axiom does not know the Riemann Zeta function.
12 The system error Binding stack overflow, restarting... was issued.

128

9. Conclusions

We have presented a new algorithm for computing limits of exp-log functions.

The algorithm overcomes the cancellation problem other algorithms su�er

from. The algorithm is very compact, easy to understand, easy to prove and

easy to implement. This goal was achieved using a uniform method, namely

to expand the whole function into a series in terms of its most rapidly varying

subexpression. This way, the size of the problem is reduced in every iteration

step and the size of the intermediate expressions are kept under control. In

this point our algorithm di�ers substantially from the bottom-up algorithms

which solve the cancellation problem. As a consequence, our algorithm is in

particular suited to the implementation in a symbolic manipulation system.

For particular limits, our algorithm may even be used as straight forward

technique to compute the result using paper and pencil.

We have also shown how the algorithm can be extended to handle special

functions. We have used a practical approach which tries to rewrite functions

so that all essential singularities are captured by exponentials and logarithms

only. This allows us to apply the algorithm for exp-log functions directly,

provided that the underlying series facility is powerful enough.

As an underlying tool our algorithm uses a series computation facility which

must support arbitrary real exponents. We have shown an implementation

of a lazy evaluated model within the Maple system. The task of analyzing

the comparability classes of a function and the series computation facility

are nicely separated with our algorithm. When computing a series we never

have to worry about comparability classes as e.g. new ones may never evolve.

Whenever a series has to be computed, it is guaranteed, that the function

can be expanded into a power series. The only relation between the actual

asymptotic scale in which the expansion is performed and the series facility is

the value of ln!.

As a byproduct of the algorithm for computing limits we have described an

algorithm for computing asymptotic expansions. The asymptotic scale which

is used is thereby determined on the y.

The algorithm has already been extended recently by van der Hoeven [88, 64]

in order to expand solutions to polynomial equations into asymptotic series

130 9. Conclusions

as well as to handle di�erentiation, integration, functional composition and

inversion. The basic technique which is used is multiseries, which is equivalent

to our hierarchical series. Moreover, instead of calculating the most rapidly

varying subexpression of the whole function a reduced basis is gradually com-

puted. This way unnecessary order comparisons are avoided. As we have seen,

such a reduced basis is also computed implicitly by our algorithm.

Our algorithm is available throughMaple's limit function sinceMaple V Re-

lease 3. When we have compared our algorithm with the algorithms available

in other commercially available computer algebra systems we have discovered,

that almost all of these algorithms still use heuristics to solve the limit prob-

lem. As a consequence they badly fail on the examples we tested. We think

that we have �lled a gap with our algorithm and expect that it will soon be

implemented in other systems.

The exp-log version of our algorithm is already available in MuPAD [25]

Version 1.2.2. It has been implemented by F. Postel [94] and does replace a

previous version which was built on top of a Puiseux series facility, i.e. which

was a member of the class of algorithms described in Section 2.3.2. Also for

the Reduce system it was planned to extend the limit computation facility

using our approach [43].

A. Maple Code for Computing Limits of

exp-log Functions

The following module contains theMaple code to compute limits of arbitrary

real exp-log functions. It is written forMaple V Release 4. The code assumes

that there exists a procedure Series which computes a series approximation of

a given function as well as a procedure LeadTermwhich determines the leading

term of a given series. The latter procedure accepts a second argument which

controls the search for the leading term in the case that the leading coe�cient

is zero. If the leading exponent is larger than the second argument then the

search is stopped.

The procedure MODULE provides modules inMaple and allows information

hiding. The objects (procedures and variables including environment vari-

ables) which are declared to be local to this module cannot be accessed from

outside. Only those objects which are explicitly exported are visible outside

the scope of the module. They are stored into a table (package) whose name

is the name of the module.

###

#

Limit computing facility for exp-log functions

Copyright 1994 D. Gruntz, Wissenschaftliches Rechnen, ETH Zurich`;

#

###

MODULE(MRV,

Exported procedures

[Limit],

Local procedures and variables

[MrvLeadTerm, Mrv, Max, Compare, Rewrite, Sign, MoveUp, MoveDown, Simplify,

ResolveCsgn, ResolveSignum, PROVISO, AssumePositive, ClearAssumption,

ClearRememberTable, x, _EnvPreProcessCsgn, _EnvLimitW, _EnvLimitWinv]

):

Environment Variables:

Testzero : used within series (cf. Section 7.2)

_EnvSIGNUM : used to resolve signum expressions (cf. Section 7.4)

Limit := proc(e::algebraic, limpoint::equation, direction::name)

local z, z0, r, e0, e1, X;

z := lhs(limpoint); z0 := rhs(limpoint);

if z0 = infinity then e0 := subs(z= x, e):

elif z0 = -infinity then e0 := subs(z=-x, e):

132 A. Maple Code for Computing Limits of exp-log Functions

elif nargs = 3 and direction = left then e0 := subs(z=z0-1/x, e)

else e0 := subs(z=z0+1/x, e)

fi;

_EnvSIGNUM := proc(e) local s;

s := signum(0, Limit(e, x=infinity), 0):

if s = 0 then s := 1/signum(0, Limit(1/e, x=infinity), 0) fi;

s

end:

Testzero := subs('TESTZERO' = eval(Testzero), proc(e) local e0, e1, e2, t, X;

e0 := e:

e1 := select(has, indets(e0, {specfunc(anything,'csgn'),

specfunc(anything,'signum')}), {x,_EnvLimitW});

if e1 <> {} then AssumePositive(X);

for t in e1 do

if op(0,t) = csgn then

e2 := ResolveCsgn(subs(_EnvLimitW=_EnvLimitWinv,op(1,t)), X);

if type(e2, integer) then e0 := subs(t = e2, e0) fi

elif op(0,t) = signum then

e0 := subs(t = ResolveSignum(subs(_EnvLimitW=_EnvLimitWinv,op(1,t)), X), e0)

fi

od;

e0 := eval(e0);

ClearAssumption(X)

fi;

TESTZERO(e0)

end):

ClearRememberTable(MrvLeadTerm); ClearRememberTable(Mrv);

e1 := MrvLeadTerm(Simplify(e0));

if testeq(e1[3]) then r := expand(e1[1])

elif signum(0, e1[3], 0) = 0 then r := expand(e1[1])

elif signum(0, e1[3], 0) = 1 then r := 0

elif signum(0, e1[3], 0) = -1 then r := Sign(e1[1])*infinity

else ERROR(`cannot determine the sign of `, e1[3])

fi;

r

end: # Limit

MrvLeadTerm := proc(e::algebraic)

returns the leading term c0*w^e0 of the series of e in terms of the most rapidly

varying subexpression w. The results has the form [c0, w, e0].

local e0, e1, e2, e3, m0, subspat, Winv, s, t, W, X;

option remember;

e0 := e;

e1 := select(has,

indets(e0, {specfunc(anything, 'csgn'), specfunc(anything, 'signum')}), x);

if e1 <> {} then AssumePositive(X);

for t in e1 do

if op(0,t) = csgn then e2 := ResolveCsgn(op(1,t), X);

if type(e2, integer) then e0 := subs(t = e2, e0) fi

elif op(0,t) = signum then

e0 := subs(t = ResolveSignum(op(1,t), X), e0)

fi

od;

e0 := eval(e0): ClearAssumption(X)

fi;

if not has(e0, x) then RETURN([e0,1,0]) fi;

if nargs = 2 then m0 := select((t,e) -> has(e, t), args[2], e0);

if m0 = {} then m0 := Mrv(e0) fi;

else m0 := Mrv(e0);

fi;

133

if member(x, m0) then RETURN(MoveDown(MrvLeadTerm(MoveUp(e0), MoveUp(m0)))) fi;

AssumePositive(W); _EnvLimitW := W;

subspat := Rewrite(m0, W);

Winv := subs(map(x->(op(2,x)=op(1,x)), subspat), W);

e3 := op(Winv);

if Sign(e3) = 1 then subspat := subs(W=1/W,subspat): Winv := 1/Winv: e3 := -e3 fi;

ln(1/W) := -e3; ln(W) := e3; _EnvLimitWinv := Winv;

e1 := eval(subs(op(subspat), e0));

if not has(e1, W) then e2 := e1: e3 := 0:

else e2 := LeadTerm(Series(e1, W), 0); e3 := e2[1][2]; e2 := e2[1][1];

fi;

ln(1/W) := 'ln(1/W)': ln(W) := 'ln(W)':

e2 := eval(subs(W = Winv, e2));

s := signum(0, e3, 0);

if not type(s, integer) then s := testeq(e3);

if s = true then s := 0; e3 := 0

elif s = false then s := 1

else ERROR(`could not decide zeroequivalence of `, e3)

fi

fi;

ClearAssumption(W);

if s <> 0 then RETURN([e2,Winv,e3]) fi;

MrvLeadTerm(e2)

end: # MrvLeadTerm

Mrv := proc(e)

local c, d, m;

option remember;

if not has(e, x) then {}

elif e = x then {x}

elif type(e, `*`) then Max(Mrv(op(1,e)), Mrv(subsop(1=1, e)))

elif type(e, `+`) then Max(Mrv(op(1,e)), Mrv(subsop(1=0, e)))

elif type(e, `^`) then

if not has(op(2,e), x) then Mrv(op(1,e)) else Mrv(exp(ln(op(1,e))*op(2,e))) fi;

elif type(e, 'ln(algebraic)') then Mrv(op(e))

elif type(e, 'exp(algebraic)') then c := Mrv(op(e)); m := MrvLeadTerm(op(e));

if m[3] < 0 then d := Compare(e, c[1]);

if d = `>` then {e} elif d = `<` then c else {e} union c fi

else c

fi

elif type(e, function) and nops(e)=1 then Mrv(op(e))

elif type(e, function) and nops(e)=2 then Max(Mrv(op(1,e)), Mrv(op(2,e)))

else ERROR(`unknown expr`,e)

fi

end: # Mrv

Max := proc(f, g)

local c;

if f = {} then g

elif g = {} then f

elif f intersect g <> {} then f union g

elif member(x, f) then g

elif member(x, g) then f

else c := Compare(f[1],g[1]);

if c = `>` then f elif c = `<` then g else f union g fi

fi

end: # Max

134 A. Maple Code for Computing Limits of exp-log Functions

Compare := proc(f, g)

local lnf, lng, c, s;

if type(f, exp(anything)) then lnf := op(f) else lnf := ln(f) fi;

if type(g, exp(anything)) then lng := op(g) else lng := ln(g) fi;

c := MrvLeadTerm(lnf/lng); s := signum(0, c[3], 0);

if s = -1 then `>`

elif s = 1 then `<`

elif s = 0 then `=`

else ERROR(`sign could not be determied`)

fi

end: # Compare

Rewrite := proc(m::set(exp(algebraic)), W::name)

local f, g, A, c, m0, subspat:

if nargs = 3 then g := args[3]

else g := m[1];

for f in m do if length(f) < length(g) then g := f fi od

fi;

m0 := sort(convert(m, list), (a,b)->evalb(nops(Mrv(a)) >= nops(Mrv(b))));

subspat := NULL:

for f in m0 do c := MrvLeadTerm(op(f)/op(g));

ASSERT(c[3]=0, `Elements must be in the same comparability class`);

c := c[1]; A := exp(op(f)-c*op(g)); subspat := subspat, f = A*W^c;

od;

[subspat]

end: # Rewrite

MoveUp := proc(e)

eval(subs([ln(x)=x, x=exp(x)], e))

end: # MoveUp

MoveDown := proc(e)

eval(subs([exp(x) = x, x = ln(x)], e))

end: # MoveDown

Simplify := proc(e)

if type(e, {`+`,`*`,'function'}) then map(Simplify, e)

elif type(e, `^`) then

if has(op(2,e),x) then exp(ln(Simplify(op(1,e)))*Simplify(op(2,e)))

else Simplify(op(1,e))^op(2,e)

fi

else subs(E=exp(1), e)

fi

end: # Simplify

ResolveCsgn := proc(e, X::name)

local e0, e1, lt;

lt := 1;

e0 := MrvLeadTerm(e); lt := lt * e0[2]^e0[3]:

e1 := csgn(subs(x=X,e0[1]));

while not type(e1, 'integer') and has(e1, x) do

e0 := MrvLeadTerm(e0[1]); lt := lt * e0[2]^e0[3]:

e1 := csgn(subs(x=X,e0[1]))

od;

if Re(subs(x=X, e0[1]))=0 then

if not assigned(_EnvPreProcessCsgn) then

if Re(subs(x=X, e)) = 0 then

e1

else _EnvPreProcessCsgn := Order;

e0 := ResolveCsgn(e - e0[1]*lt, X);

if e0 = UNKNOWN then PROVISO(e,` is pure imaginary`); e1

else e0

fi

135

fi

else

_EnvPreProcessCsgn := _EnvPreProcessCsgn-1;

if _EnvPreProcessCsgn > 0 then procname(e - e0[1]*lt)

else UNKNOWN

fi

fi;

else

if type(e1,'integer') then e1 else FAIL fi

fi

end: # ResolveCsgn

ResolveSignum := proc(e, X::name)

local e0, e1;

e0 := MrvLeadTerm(e);

e1 := signum(subs(x = X,e0[1]));

while has(e0[1], x) do

e0 := MrvLeadTerm(e0[1]);

e1 := signum(subs(x = X,e0[1]))

od;

e1

end: # ResolveSignum

Sign := proc(e)

local sig;

if not has(e, x) then sig := signum(0, e, 0);

if sig = 0 then ERROR(`e must not be zero`)

elif type(sig, integer) then sig

else ERROR(`cannot compute the sign of`,e)

fi

elif type(e,`*`) then map(Sign, e)

elif e = x then 1

elif type(e, 'exp(algebraic)') then 1

elif type(e,`^`) then

if op(1,e) = x then 1

elif Sign(op(1,e)) = 1 then 1

else Sign(MrvLeadTerm(e)[1])

fi

elif type(e, function) or type(e, `+`) then

Sign(MrvLeadTerm(e)[1])

else ERROR(`cannot compute the sign of `, e)

fi

end: # Sign

AssumePositive := proc(e)

global `property/object`;

readlib('assume'):

`property/object`[e] := RealRange(Open(0), infinity):

end: # AssumePositive

ClearAssumption := proc(e)

global `property/object`;

`property/object`[e] := evaln(`property/object`[e]):

end: # ClearAssumption

ClearRememberTable := proc(p::procedure)

assign(p, subsop(4=NULL, op(p)))

end:

PROVISO := proc() lprint(`PROVISO: `,args) end:

AssumePositive(x):

END(MRV):

136

Bibliography

[1] S.K. Abdali, G.W. Cherry and N. Soi�er, An Object Oriented Approach

to Algebra System Design, Proceedings of the 1986 Symposium on Sym-

bolic and Algebraic Computation SYMSAC'86 (B.W. Char, ed.), pp. 24{

30, 1986.

[2] H. Abelson and G. Sussman, Structure and Interpretation of Computer

Programs, The MIT Press, Cambridge Mass, 1985.

[3] M. Abramowitz and I.A. Segun, Handbook of Mathematical Functions,

Dover Publications, New York, 1968.

[4] V.S. Adamchik, Mathematica Package Limit.m, delivered with Mathe-

matica since version 2.0, 1991.

[5] J.M. Aguirregabiria, A. Hern�andez and M. Rivas,Are we Careful Enough

when Using Computer Algebra?, Computers in Physics 8 (1), pp. 56{61,

1994.

[6] J. Ax, Schanuel's conjecture, Annals of mathematics 93, Series 2,

pp. 252{268, 1971.

[7] C. Blatter, Ingenieur Analysis, VDF Verlag der Fachvereine, Z�urich, 1989.

[8] R.P. Boas, Counterexamples to L'Hôpital's rule, American Mathematical

Monthly 93, pp. 644{645, 1986.

[9] M. Boshernitzan, An Extension of Hardy's class L of \Orders of In�nity",

J. Analyse Math 39, pp. 235-255, 1981.

[10] N. Bourbaki, �El�ements de Math�emathique, Fonctions d'une variable

r�eelle, nouvelle edition, Hermann, Paris, 1976.

[11] C. Brezinski, Acc�eleration de la Convergence en Analyse Num�erique, Lec-

ture Notes in Mathematics 584, Springer-Verlag, 1977.

[12] M. Bronstein, Simpli�cation of Real Elementary Functions, Proceedings

of the International Symposium on Symbolic and Algebraic Computation

ISSAC'89 (G.H. Gonnet, ed.), pp. 207{211, 1989.

138 BIBLIOGRAPHY

[13] I.N. Bron�stein, K.A. Semendjajew, G. Musiol and H. M�uhlig, Taschen-

buch der Mathematik, 2. Auage, Verlag Harri Deutsch, Thun, Frankfurt

am Main, 1995.

[14] W.H. Burge and S.M.Watt, In�nite Structures in Scratchpad II, Proceed-

ings of the European Conference on Computer Algebra EUROCAL'87

(J.H. Davenport, ed.), Lecture Notes in Computer Science 378, Springer

Verlag, pp. 138{148, 1987.

[15] B.F. Caviness, On Canonical Forms and Simpli�cation, Journal of the

ACM 17 (2), pp. 385{396, 1970.

[16] B.F. Caviness and H.I. Epstein, A Note on the Complexity of Algebraic

Di�erentiation, SIGSAM Bulletin 11 (3), pp. 4{6, 1977.

[17] B.F. Caviness and M.J. Prelle, A Note on Algebraic Independence of

Logarithmic and Exponential Constants, SIGSAM Bulletin 12, pp. 18{

20, 1978.

[18] R.M. Corless and D.J. Je�rey, Well ... It isn't Quite That Simple,

SIGSAM Bulletin 26 (3), pp. 2{6, 1992.

[19] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Je�rey and D.E. Knuth,

On Lambert's W Function, Advances in Computational Mathematics, to

appear.

[20] B.I. Dahn and P. G�oring, Notes on exponential-logarithmic terms, Fun-

damenta Mathematicae 127, pp. 45{50, 1986.

[21] R.R. Fenichel, An On-line System for Algebraic Manipulation, Ph.D.

Thesis, Project MAC, MIT, MAC-TR-35, 1966.

[22] J.P. Fitch, On algebraic simpli�cation, The Computer Journal 16 (1),

pp. 23{27, 1973.

[23] P. Flajolet, B. Salvy and P. Zimmermann, Automatic average-case anal-

ysis of algorithms, Theoretical Computer Science 79, pp. 37{109, 1991.

[24] D.P. Friedman and D.S. Wise, CONS should not evaluate its arguments,

in: Automata Languages and Programming, (S. Michaelson and R. Mil-

ner, eds.), pp. 257{284, 1976.

[25] B. Fuchssteiner et al., MuPAD multi processing algebra data tool, Be-

nutzerhandbuch MuPAD Version 1.1, Birkh�auser Basel, 1993.

[26] K.O. Geddes, Numerical integration in a symbolic context, Proceedings

of the 1986 Symposium on Symbolic and Algebraic Computation SYM-

SAC'86 (B.W. Char, ed.), ACM Press, New York, pp. 186{191, 1986.

BIBLIOGRAPHY 139

[27] K.O. Geddes and G.H. Gonnet, A New Algorithm for Computing Sym-

bolic Limits using Hierarchical Series, Proceedings of the International

Symposium on Symbolic and Algebraic Computation ISSAC'88 (P. Gi-

anni, ed.), Lecture Notes in Computer Science 358, Springer Verlag,

pp. 490{495, 1988.

[28] K.O. Geddes and G.J. Fee, Hybrid Symbolic-Numeric Integration in

MAPLE, Proceedings of the International Symposium on Symbolic and

Algebraic Computation ISSAC'92 (P.S. Wang, ed.), ACM Press, New

York, pp. 36{41, 1992.

[29] G.H. Gonnet, Determining Equivalence of Expressions in Random Poly-

nomial Time, Proceedings of the 16th ACM Symposium on the Theory

of Computing, pp. 334{341, 1984.

[30] G.H. Gonnet, New Results for Random Determination of Equivalence

of Expressions, Proceedings of the 1986 Symposium on Symbolic and

Algebraic Computation SYMSAC'86 (B.W. Char, ed.), ACM Press, New

York, pp. 127{131, 1986.

[31] D. Gruntz, A New Algorithm for Computing Asymptotic Series, Proceed-

ings of the International Symposium on Symbolic and Algebraic Compu-

tation ISSAC'93 (M. Bronstein, ed.), ACMPress, New York, pp. 239{244,

1993.

[32] D. Gruntz and W. Koepf, Formal Power Series, Preprint SC 93-31, ZIB,

Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin, 1993.

[33] D. Gruntz and M.B. Monagan, Introduction to Gauss, Maple Technical

Newsletter 9, pp. 23{35, 1993, or SIGSAM Bulletin 28 (2), pp. 3-19,

1994.

[34] D. Gruntz, In�nite Structures in Maple, MapleTech 1 (2), pp. 19{30,

1994.

[35] R.W. Hamming, Numerical Methods for Scientists and Engineers, Mc-

Graw-Hill Book Co., New York, 1962.

[36] G.H. Hardy, Orders of In�nity, Cambridge Tracts in Mathematics and

Mathematical Physics, No. 12, 1910.

[37] S.J. Harrington, A Symbolic Limit Evaluation Program in REDUCE,

SIGSAM Bulletin 13 (1), pp. 27{31, 1979.

[38] A.C. Hearn, A New REDUCE Model for Algebraic Simpli�cation, Pro-

ceedings of the 1976 ACM Symposium on Symbolic and Algebraic Com-

putation SYMSAC'76 (R.D. Jenks, ed.), ACM Press, New York, pp. 46{

52, 1976.

140 BIBLIOGRAPHY

[39] J.R. Iturriaga, Contributions to Mechanical Mathematics, Ph.D. Thesis,

Carnegie-Mellon Institute of Technology, 1967.

[40] R.D. Jenks and R.S. Sutor, Axiom The Scienti�c Computation System,

Springer-Verlag, 1992.

[41] S.C. Johnson, On the Problem of Recognizing Zeros, Journal of the ACM

18 (4), pp. 559{565, 1971.

[42] Stanley L. Kameny,A REDUCE Limits Package, Package documentation

of the Reduce installation.

[43] Stanley L. Kameny, private communication, 1994.

[44] D.E. Knuth, The Art of Computer Programming, Volume 2 / Seminu-

merical Algorithms Second Edition, Addison-Wesley, Reeading Mas-

sachusetts, 1981.

[45] P.H. Landin, A correspondence between ALGOL 60 and Church's lambda

notation, Part I, Communications of the ACM 8, pp. 89{101, 1965.

[46] J. Laurent, A Program that Computes Limits Using Heuristics to Eval-

uate the Indeterminate Forms, Arti�cial Intelligence 4, pp. 69{94, 1973.

[47] D. Levin, Development of Non-Linear Transformations for Improving

Convergence of Sequences, International Journal of Computer Mathe-

matics 3 (4), Section B, pp. 371{388, 1973.

[48] J.D. Lipson, Newton's Method: A Great Algebraic Algorithm, Proceed-

ings of the 1976 ACM Symposium on Symbolic and Algebraic Computa-

tion SYMSAC'76 (R.D. Jenks, ed.), ACM Press, New York, pp. 260{270,

1976.

[49] A. Macintyre, The Laws of Exponentiation, Model Theory and Arith-

metic, Proceedings, Paris, 1979/80, (C. Berline, K. McAloon and J.-

P. Ressayre, ed.), Lecture Notes in Mathematics 890, Springer-Verlag,

pp. 185{197, 1980.

[50] R.E. Maeder, Computations with In�nite Structures, The Mathematica

Journal 1 (2), Addison-Wesley, pp. 30{33, 1990.

[51] W.A. Martin, Determining the Equivalence of Algebraic Expressions by

Hash Coding, Journal of the ACM 18 (4), pp. 549{558, 1971.

[52] D.A. Turner, An overview of Miranda, ACM Sigplan Notices 21 (12),

pp. 158{166, 1986.

[53] M.B. Monagan, Signatures + Abstract Types = Computer Algebra �
intermediate expression swell, PhD thesis, University of Waterloo, 1989.

BIBLIOGRAPHY 141

[54] M.B. Monagan and G.H. Gonnet, Signature Functions for Algebraic

Numbers, Proceedings of the International Symposium on Symbolic and

Algebraic Computation ISSAC'94, ACM Press, New York, pp. 291{296,

1994.

[55] J. Moses, Algebraic Simpli�cation: A Guide for the Perplexed, Commu-

nications of the ACM 14, pp. 527{537, 1971.

[56] A.C. Norman, Computing with Formal Power Series, ACM Transactions

on Mathematical Software 1 (4), pp. 346{356, 1975.

[57] A. Oldenhoeft, Analysis of Constructed Mathematical Responses by Nu-

meric Tests for Equivalence, Proceedings of the ACM 24th Annual Con-

ference, pp. 117{124, 1969.

[58] J. Pichon, Calcul des limites, Ellipses, Paris, 1986.

[59] D. Richardson, Some Undecidable Problems Involving Elementary Func-

tions of a Real Variable, The Journal of Symbolic Logic 33 (4), pp. 414{

520, 1968.

[60] D. Richardson, Solution of the Identity Problem for Integral Exponential

Functions, Z. Math. Logik. Grundlagen 15, pp. 333{340, 1969.

[61] D. Richardson, The Elementary Constant Problem, Proceedings of the

International Symposium on Symbolic and Algebraic Computation IS-

SAC'92 (P.S. Wang, ed.), ACM Press, New York, pp. 108{116, 1992.

[62] D. Richardson and J. Fitch, The Identity Problem for Elementary Func-

tions and Constants, Proceedings of the International Symposium on

Symbolic and Algebraic Computation ISSAC'94, ACM Press, New York,

pp. 285{290, 1994.

[63] D. Richardson,A simpli�edmethod of recognizing zero among elementary

constants, Proceedings of the International Symposium on Symbolic and

Algebraic Computation ISSAC'95, ACM Press, New York, pp. 104{109,

1995.

[64] D. Richardson, B. Salvy, J. Shackell and J. van der Hoeven, Asymptotic

Expansions of exp-log Functions, Proceedings of the International Sym-

posium on Symbolic and Algebraic Computation ISSAC'96, ACM Press,

New York, 1996.

[65] R.H. Risch, Algebraic Properties of the Elemntary Functions of Analysis,

American Journal of Mathematics 4 101, pp. 743{759, 1975.

[66] A. Robinson, On the real closure of a Hardy �eld, Theory of Sets

and Topology, (G. Asser, J. Flachsmeyer and W. Rinow, eds.), VEB

Deutscher Verlag der Wissenschaften, Berlin, pp. 427{433, 1972.

142 BIBLIOGRAPHY

[67] M. Rosenlicht, Hardy Fields, Journal of Mathematical Analysis and Ap-

plications 93, pp. 297{311, 1983.

[68] M. Rosenlicht, The Rank of a Hardy Field, Transactions of the American

Mathematical Society 280 (2), pp. 659{671, 1983.

[69] M. Rosenlicht, Growth properties of functions in Hardy �elds, Transac-

tions of the American Mathematical Society 299 (1), pp. 261{272, 1987.

[70] B. Salvy, Examples of Automatic Asymptotic Expansions, SIGSAM Bul-

letin 25 (2), pp. 4{17, 1991.

[71] B. Salvy, Asymptotique automatique et fonctions g�en�eratrices, Phd. The-

sis, 1991.

[72] B. Salvy, General Asymptotic Scales and Computer Algebra, in: Asymp-

totic and Numerical Methods for Partial Di�erential Equations with Crit-

ical Parameters, (H.G. Kaper and M. Garbey, eds.), Kluwer Academic

Publishers, pp. 255{266, 1993.

[73] B. Salvy and J. Shackell, Asymptotic expansions of functional inverses,

Proceedings of the International Symposium on Symbolic and Alge-

braic Computation ISSAC'92 (P.S. Wang, ed.), ACM Press, New York,

pp. 130{137, 1992.

[74] J.T. Schwartz, Fast Probabilistic Algorithms for Veri�cation of Polyno-

mial Identities, Journal of the ACM 27 (4), pp. 701{717, 1980.

[75] J. Shackell, Asymptotic Estimation of Oscillating Functions using an In-

terval Calculus, Proceedings of the International Symposiumon Symbolic

and Algebraic Computation ISSAC'88 (P. Gianni, ed.), Lecture Notes in

Computer Science 358, Springer Verlag, pp. 481{489, 1988.

[76] J. Shackell, A Di�erential-Equations Approach to Functional Equiva-

lence, Proceedings of the International Symposium on Symbolic and Al-

gebraic Computation ISSAC'89 (G.H. Gonnet, ed.), ACM Press, New

York, pp. 7{10, 1989.

[77] J. Shackell, Growth Estimates for Exp-Log Functions, Journal for Sym-

bolic Computation 10, pp. 611{632, 1990.

[78] J. Shackell, Computing Asymptotic Expansions of Hardy Fields, Techni-

cal Report, University of Kent at Canterbury, England, 1991.

[79] J. Shackell, Rosenlicht Fields, Transactions of the American Mathemati-

cal Society 335 (2), pp. 579{595, 1993.

[80] J. Shackell, Nested Expansions and Hardy Fields, Proceedings of the

International Symposium on Symbolic and Algebraic Computation IS-

SAC'93 (M. Bronstein, ed.), ACM Press, pp. 234{238, 1993.

BIBLIOGRAPHY 143

[81] J. Shackell, Zero-equivalence in function �elds de�ned by algebraic dif-

ferential equations, Transactions of the American Mathematical Society

336 (1), pp. 151{172, 1993.

[82] J. Shackell, Extensions of Asymptotic Fields via Meromorphic Functions,

Journal of the London Mathematical Society 52, pp. 356{374, 1995.

[83] J. Shackell, Limits of Liouvillian Functions, Proceedings of the London

Mathematical Society 72, pp. 124{156, 1996.

[84] O. Spiess, editor, Der Briefwechsel von Johann Bernoulli, Band 1, Her-

ausgegeben von der Naturforschenden Gesellschaft in Basel, Birkh�auser,

Basel, 1955.

[85] O. Stolz, �Uber die Grenzwerthe der Quotienten, Mathematische Annalen

15, pp. 556{559, 1879.

[86] D.R. Stoutemyer, Qualitative Analysis of Mathematical Expressions Us-

ing Computer Symbolic Mathematics, Proceedings of the 1976 ACM

Symposium on Symbolic and Algebraic Computation SYMSAC'76

(R.D. Jenks, ed.), ACM Press, New York, pp. 97{104, 1976.

[87] D.R. Stoutemyer, Crimes and Misdemeanors in the Computer Algebra

Trade, Notices of the American Mathematical Society 38 (7), pp. 778{

785, 1991.

[88] J. van der Hoeven, General algorithms in asymptotics I: Gonnet and

Gruntz' algorithm, Research Report LIX/RR/94/10, Ecole Polytech-

nique, France, 1994.

[89] P.S. Wang, Evaluation of De�nite Integrals by Symbolic Manipulation,

Ph.D. Thesis, MAC TR-92, October 1971.

[90] P.S. Wang, Automatic Computation of Limits, Proceedings of the

2nd Symposium on Symbolic and Algebraic Manipulation SYMSAC'71

(S.R. Petrick, ed.), ACM Press, New York, pp. 458{464, 1971.

[91] S.M. Watt, A Fixed Point Method for Power Series Computation, Pro-

ceedings of the International Symposium on Symbolic and Algebraic

Computation ISSAC'88 (P. Gianni, ed.), Lecture Notes in Computer Sci-

ence 358, Springer Verlag, pp. 206{217, 1988.

[92] T. Weibel and G.H. Gonnet, An assume facility for CAS, with a sam-

ple implementation for Maple, Proceedings of the International Sym-

posium on Design and Implementation of Symbolic Computation Sys-

tems DISCO'92 (J. Fitch, ed.), Lecture Notes in Computer Science 721,

Springer-Verlag, pp. 95{103, 1993.

[93] E.J. Weniger, Nonlinear Sequence Transformations for the acceleration

of convergence and the summation of divergent series, Computer Physics

Reports 10, 189{371, 1989.

144 BIBLIOGRAPHY

[94] P. Zimmermann, New features in MuPAD 1.2.2, mathPAD, Vol 5, No 1,

27{38, 1995.

[95] R.E. Zippel, Univariate Power Series Expansions in Algebraic Manipu-

lation, Proceedings of the 1976 ACM Symposium on Symbolic and Al-

gebraic Computation SYMSAC'76 (R.D. Jenks, ed.), ACM Press, New

York, pp. 198{208, 1976.

[96] R. Zippel, The Weyl Computer Algebra Substrate, Proceedings of the In-

ternational Symposium on Design and Implementation of Symbolic Com-

putation Systems DISCO'93 (A. Miola, ed.), Lecture Notes in Computer

Science 722, Springer-Verlag, pp. 303{318, 1993.

Curriculum 145

Curriculum Vitae

I was born on May 26, 1964, in Basel, Switzerland. After �nishing school at

the Mathematisch Naturwissenschaftlichen Gymnasium in Basel with Mature

Type C in 1983, I started to study Computer Science at the Swiss Federal

Institute of Technology (ETH) Z�urich. In 1988 I received my Diploma in

Computer Science. I was awarded a silver medal for my Diploma thesis in

the �eld of computer vision. From 1988 to 1990 I was a teaching assistant in

the group of Prof. W. Gander and from 1990 to 1994 I have been a research

assistant in the symbolic computation group of Prof. G.H. Gonnet at the

Institute for Scienti�c Computing at ETH Z�urich.

