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Abstract

We describe the design of data structures and a computer
program for storing a table of symbolic inde�nite or de�nite
integrals and retrieving user-requested integrals on demand.
Typical times are so short that a preliminary look-up at-
tempt prior to any algorithmic integration approach seems
justi�ed. In one such test for a table with around 700 entries,
matches were found requiring an average of 2.8 milliseconds
per request, on a Hewlett Packard 9000/712 workstation.

1 Introduction and objectives

A goal of our recent work is to explore storage and retrieval
of mathematical knowledge in a computer problem-solving
environment.

In particular we have considered how to supplement a
computer algebra system's procedures for computing the
form of inde�nite or de�nite integrals by including in the
system the mass of integrals that have been tabulated dur-
ing the last two centuries. Of course some of this tabulated
material (and more) can be computed algorithmically, but
some of it cannot be found by current programs or by the
kinds of straightforward extensions of those programs that
we anticipate evolving from current research.

In this paper we address the data-structuring and search-
ing issues of accessing large tables of integral formulas.

Let us review the reasons for supplementing computer
algebra systems.

� Algorithmic calculation of integrals, though decisive,
is incomplete, with the most progress being con�ned
to the (mostly \elementary") inde�nite integrals of
(mostly) elementary functions (There is a large lit-
erature on this; for explicit algorithmic presentations
see, for example Geddes et al. [3]). (Elementary here
means composed of well-known functions, not neces-
sarily small expressions). By contrast, the vast major-
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ity of tabulated entries are of de�nite integrals (often
improper), of mostly non-elementary forms.

� Even when an answer can be determined algorithmi-
cally, the form of the result may not be as simpli�ed
as that in a well-researched table [4] [6]. Additionally,
some algorithms are ignorant of side-conditions that
must be satis�ed for meaningful results. Some table
entries provide such details.

The automated table should contain at least the entire
collection of entries in various large standard integral tables.
Major objectives for the automated table include criteria
enumerated below.

1.1 Speed

If the requested integral is not in the table, we want to learn
this quickly so that we can try alternatives, including mod-
ifying the integral by some heuristic transformations and
re-searching. Our design is such that in some cases we can
determine that the integral isn't in the table without even
scanning the entire integrand.

In our design, the time needed to �nd an integral in the
table is no worse than linear in the size and complexity of the
integrand, and since we use hash-tables for lookup, the time
for searching does not depend on the number of integrals
stored in the table.

1.2 Allowing for variations

Not all forms of integrals that can be integrated can be ex-
plicitly in the table. Some required transformations such as
expressing an integral of a sum as a sum of integrals, or re-
moving constant factors, should logically precede any table
operations. Beyond this, an integral not found in the table
can sometimes be transformed into a so-called synonym in
the table. Some heuristics and algorithms for such transfor-
mations are integration by parts, substitutions, and di�er-
entiating under the integral sign. This report, however, is
con�ned to �nding an integral in the table, not preliminary
or subsequent transformations.

1.3 New entries

Although our progress would be most obvious if we encoded
those published forms that are not (currently) derived by al-
gorithms, we recognize there are other possibilities. For ex-
ample, we can construct (algorithmically by integration, dif-
ferentiation, generating function, or other techniques) new
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entries ab initio. We can pre-compute and store uncommon
or common-but-costly algorithmic integral results, depend-
ing upon the trade-o� between storage and computing costs.

1.4 Errors in the table

We recognize the inevitability that some published entries
are outright awed1. We hope to be able to check the an-
swers as we enter them. Unfortunately some of the table
entries, as well as some algorithmically derived answers, are
erroneous principally in missing essential restrictions on the
parameters of the input or output. Algebraic checks by dif-
ferentiation are usually insu�cient to determine such errors,
and such checks work at best on inde�nite integrals. The
vast majority of entries are de�nite integrals in which alge-
braic checks by di�erentiation are not possible. Other tech-
niques such as random-point evaluation may sometimes be
used for gross checks, but these do not provide information
on the borders of domains of validity.

1.5 Suggesting extensions to computer algebra systems

We feel it is essential to return restrictions on results (e.g.
\valid only for Re(z) > 1") in a form that permits further
computation. To date, most systems make minimal conces-
sions to encoding information of this nature, although we
can point to some preliminary work by Dingle and Fateman
[2].

We hope that the availability of large amounts of such
information will allow vendors of such systems to change
their systems so that they can make use of this in further
computations.

1.6 Reading published tables

In developments described elsewhere [1], and in continuing
work at Berkeley, we are exploring the reading of entries in
standard tables by computer (OCR: optical character recog-
nition). This does not a�ect our processing of the informa-
tion, since for purposes of this paper we can assume the for-
mulas of interest have been presented in a machine-readable
form. The fact is that our test data to date have been typed
in manually in a form that includes all the information that
would normally be in a table.

2 The Main Technique: Successive Approximate Matches

A requested integral is said to match an entry in the table
if its integrand agrees with that of the table entry up to a
choice of parameters. Thus, e.g., the integrand 1=(x2 + 1)
would match 1=(x2 + 1), 1=(x2 � a), 1=(x2 + a2), and (x2 +
bx+ c)�1 (etc).

If any one of these forms were stored in the table, it would
be recalled. If several are recalled, a decision as the which
is best may be pursued by checking values of parameters by
a kind of \uni�cation" program.

We seek a match as the end of a sequence of successive
approximate matches. In the above example we �rst seek all
reciprocals, then those reciprocals which are also reciprocals
of quadratics. At each stage in the sequence, the number of
candidate matches is reduced. Furthermore, if there are no
candidate matches at a given stage, then the requested inte-
grand isn't in the table, and further search would be futile.
(Although there is provision in the program for prematurely

1Indeed, some tables are alleged to be full of errors, and to be sure
we have found a few ourselves.

terminating the sequence of successful approximate matches,
in particular when the number of candidate matches is re-
duced to one, we have not yet used this provision. Going
to the end of the sequence has the following advantage: At
each stage in the sequence, the integrand is decomposed into
fragments. At the last stage the fragments are the smallest.
Subsequent pattern matching (to �nd values for parameters)
is simpli�ed when done on these smallest fragments.)

The sequence of approximate matches is controlled by a
set of keys associated with the integrand. Each key is related
to a fragment of the integrand. The keys are determined on
insertion of the integrand in the table and matched when
the table is searched for a user integrand. The keys grow
in discriminatory power and length as one goes down the
expression tree of the integrand. In the above example, the
�rst two keys would be the atom reciprocal and the list
(reciprocal quadratic) .

In order to achieve the situation where the complete set
of keys uniquely determine an integrand up to a choice of
parameters, and every matching expression is necessarily de-
composed into the same set of keys, we must consider cases
in which the database and search expressions di�er in the
order of occurrence of factors of a product or terms in an
embedded sum. To treat such cases without multiple stor-
age of the same product or sum, we rearrange the keys in a
canonical order. Within each stage of the approximation se-
quence, the keys are in fact ordered such that the key more
likely (in our a priori ranking) to decrease the number of
subsequent candidates occurs earlier in the key order.

3 The On-line Integral Table

We describe our structures and programs assuming some
familiarity with Lisp. Our programs have been written en-
tirely in ANSI standard Common Lisp [7], and can therefore
be run on a wide variety of computers.

Every entry to be tabulated is stored as an instance of
a Lisp structure whose slots are the integrand, limits of in-
tegration, regions of validity of the answer, provenance (the
source of the formula), and a unique acquisition number.
Also included in the entry is the \answer" which is typically
a closed form result, one or more reduction formula(s), or a
program to be used to evaluate the integral, given the values
of parameters and limits. Provision is made for restrictions
on the parameters for validity of the answer.

Although we have not done so yet, we expect that some
integral entries would bene�t by being transformed before
storage, so as to correspond to formats that can be in-
dexed more readily, and where patterns can be more readily
matched. Thus a sub-pattern x2 + a2 would routinely be
changed to x2 + c0 with the side-condition a = �pc0.

For convenience in discussion (and in programs as well)
we standardize the variable of integration to be x in the pro-
gram. An appropriate re-binding of variables is performed
if necessary.

The integrand of a tabulated integral is represented as
a Lisp form, a list, some of whose items can also be lists.
The �rst item in each list, the pre�x corresponds to the
operator of the mathematical form of the integrand or its
subexpressions. These pre�xes are used to form the keys for
the insertion of the tabulated integrals and a nearly identical
extraction process is used when the table is searched for
a user-requested integral. (A crude characterization of a
pre�x of an expression is that it is sometimes just the \main
operator.")

2



On storing an integral or retrieving it in our indexing
structure, we need really only store its acquisition number,
which uniquely de�nes the full answer.

Our indexing structure is a collection of hash-tables2 cor-
responding to parts of the key. There is one hash-table for
inde�nite integrals. For the de�nite integrals, there is a sep-
arate hash-table for each commonly used pair of upper and
lower limits.

On searching, the �rst key of the user-requested integral
is looked up in the appropriate hash-table, yielding a list
of acquisition numbers. If this list is empty, the integral
isn't in the table. Otherwise, the list of acquisition num-
bers corresponding to the second key of the user-requested
integral is intersected with the acquisition number list of
the �rst key. If the intersection is empty, then the integral
isn't in the table. We continue with successive keys, succes-
sive acquisition number lists, and successive intersections.
If at any stage the remaining list of acquisition numbers is
empty then the integral isn't in the table.The intersection
of acquisition number lists of all the keys gives all those in-
tegrals in the table which might match the user-requested
integral. There might easily be more than one item in the
�nal acquisition-number list if di�erent choices for the pa-
rameters led to overlapping patterns.

4 Pattern Hashing

In this section we provide some details on our pattern pro-
cessing for storage and retrieval.

4.1 Pre�xes

Keys are basically lists of pre�xes designed to lead a search
for di�erences or commonality down an algebraic expression
tree.

Sometimes the main tree operators can be used as keys,
but sometimes they must be modi�ed. An unmodi�ed pre�x
can have the following limitations:

� Non-uniformity. Pieces of the integrand might have
no operator; thus they will have no pre�x in the usual
Lisp form. For example, if the integrand is x sin x,
the �rst x has no operator and has no pre�x in the
Lisp form, (* x (sin x)). Also, constants can have
an elaborate sub-structure like (n + 1)� or no opera-
tor, like 3. To overcome this limitation, constants and
the variable of integration are forced to have modi-
�ed pre�xes. We call modi�ed or unmodi�ed pre�xes
that are used in keys leaders. Constants are given the
leader const and x is given the leader identity. Ar-
guments of the leaders const and identity are not
processed further. Thus we can have (identity x)

but not (identity (identity x)).

� Over-generalization. The categories determined by
some Lisp pre�xes can be too broad. For example the
pre�x expt in the list (expt base power) corresponds
to several cases: Power can be a positive integer, a
negative integer, half an odd integer, a general con-
stant, or an expression involving x. Base can be x, a
constant, or an expression depending on x. For each
of these cases, the value of the integral is a distinct
form, the integral is listed separately in the table, or
the heuristic method of calculating the integral is dif-
ferent. For example, let base be a quartic in x. If power

2A hash-table is a built-in data type in Common Lisp. Using hash-
tables provides an O(1) search.

is a positive integer, the integral is a polynomial in x,
calculated by expansion and term-by-term integration.
If power is a negative integer, partial fraction expan-
sion is performed. If power is 1=2, elliptic functions
arise. While the number of integrals corresponding to
expt can be quite large, the number of integrals cor-
responding to each case is much smaller. Moreover,
each case suggests a di�erent heuristic transformation
of the integrand. We overcome these limitations by de-
composing the broad category expt into sub-categories
with leaders: power-x, reciprocal, sqrt, etc. This
decomposition involves look-ahead to list items beyond
the pre�x.

Unless precautions are taken, requests for special cases
of integrals involving expt can be erroneously reported
absent from the table. The error arises from assign-
ing the general and special cases to di�erent leaders.
For example if the only table entry for the integralR
1

0
xae�xdx were for general a, then xa is assigned the

leader const-power. Should the integral
R
1

0
x3e�xdx

be requested, x3 would be assigned the leader power-x
and be reported absent from the table. This error is
avoided by tabulating separate entries for xa and xn,
where n is declared to be a positive integer. We believe
that the di�erent forms for the answer �(a + 1) and
n! may be more cleanly expressed using two entries
than using one entry with alternatives, if the special
conditions (e.g. integer n) can be determined.

� Over-specialization. Sometimes integrand fragments
are assigned to di�erent categories by the pre�x when
they should be coalesced into the same leader. For
example all polynomials will be coalesced into the lead-
ers, linear, quadratic, cubic, and polyn rather than
miscellaneous entries under the pre�x +.

� Too many arguments. For reasons described below,
multivariate functions cause complications. This lim-
itation is overcome by assigning univariate leaders to
particular multivariate pre�xes. Some bivariate pre-
�xes whose �rst argument is x are rewritten as a func-
tion of one argument with a new leader. For exam-
ple the list (hermite (* a x) n) for the n-th Her-
mite polynomial becomes the list (hermite-x (a n)),
a leader with a single argument.

With these conventions, the integrand (expt (log (cos

x)) 1/2) will yield the set of keys: sqrt, (sqrt log),
(sqrt log cos), (sqrt log cos identity). In searching
successively \deeper" with these keys we will check that we
have a �rst key sqrt but we will discard the list of acqui-
sition numbers { there are two many beginning with this
leader; we really begin our collection of acquisition numbers
with (sqrt log).

4.2 Multivariate Functions

A multivariate function yields a separate key and a separate
fragment for each argument. For example, the integral of an
ordinary Bessel function: Jn(

p
x), which we write in Lisp as

(bessel-j (sqrt x) n), yields the two keys, the �rst key,
(bessel-j sqrt), with the rest of its fragment, x, and the
second key, (bessel-j const)with the rest of its fragment,
n. From the remainder of the �rst fragment we get the addi-
tional key, (bessel-j sqrt identity). Search is narrowed
when each key has an integer inserted after the multivariate
leader to show the position of the argument. Thus the two
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keys have the forms (bessel-j 1 sqrt) and (bessel-j 2
const). On storing integrals in the tables, the �rst key is
expanded by going deeper in the expression tree of the inte-
grand, yielding the last key (bessel-j 1 sqrt identity).
These keys are stored in appropriate hash tables. If a user
request for the same integrand is encountered, the same keys
will be produced and searched successively in the tables. If
the �rst key is not matched, the search is terminated, and
the unmatched key is returned. This might suggest to the
user, or even the program, to make a change of variable for
the sqrt fragment.

4.3 Treatment of Products

Most of the integrals in tables are integrals of products.
Products are also generated when one tries to do an integral
by change of variable. The fact that the value of the prod-
uct is independent of the order of listing of its factors causes
complications. To save space, only one order of the factors
is stored, the canonical order. When a user-requested prod-
uct integrand is searched, its factors are rearranged into the
canonical order. Proper choice of the canonical order can fa-
cilitate search. Factors of the integrand which are less likely
to be found in the tables should be earlier in the order. In
the previous example, if the integrand is multiplied by x3,
it yields an integrand (* (expt x 3) (bessel-j (sqrt x)

n)). Although the leader bessel-j occurs second in the
order presented, it should be �rst in the canonical order,
since Bessel functions are less likely to occur in integral ta-
bles than powers of x. In extreme cases there will be no
products involving the least likely leader, so that the in-
tegral could be said to be absent from the table without
further search. Suppose the user's request is for a product
of three factors, two of which have unlikely leaders. If no
integrals in the table have both these leaders then checking
the third leader is unnecessary. More precisely, we associate
with each leader a unique positive integer, called the rar-
ity, so that leaders less likely to occur are given a higher
rarity. Canonical ordering of factors in a product is in de-
creasing order of rarity. Thus the above example would yield
the keys (* 1 bessel-j)(* 2 power-x) (* 1 bessel-j 1
sqrt)(* 1 bessel-j 2 const)(* 2 power-x)(* 2 power-x

const). The �rst key might be so unlikely that a user in-
tegral could be rejected without having to check any other
keys. We assigned the order of rarities based on our a pri-
ori guesses of likelihood of the leader. If our estimates are
wrong, the search will still be correct but slower.

The other main commutative leader + does not occur at
top level, since the integral of a sum is the sum of the integral
of each term. Sums at deeper levels are subsumed by lin-
ear combinations, using the leader lincomb, to be described
below.

The leaders * and lincomb have the added complication
of allowing a variable number of arguments. Unless precau-
tions are taken, this could cause confusion. For example the
keys for (* (foo x)(bar x)) would also match the initial
keys for (* (foo x)(bar x)(baz x)). To avoid this diver-
sion into false searches, the hash table for inde�nite integrals
is decomposed into several hash tables, a separate hash ta-
ble of each \arity" (number of operands) of the leader. A
similar decomposition is performed for each of the de�nite
integral hash tables.

4.4 Plurals

The aforementioned sorting of factors by rarity of their lead-
ers breaks down when two or more factors have the same

leader. This occurrence, though uncommon, is frequent
enough to warrant special treatment. For example, orthog-
onal polynomials often occur in pairs within an integrand.

Rather than resolving the resulting ambiguity of ordering
by going deeper into the expression tree, a new leader is
created for each leader which might occur twice or more in
a product. Thus for the integrand (* (expt x 4)(hermite
x m)(hermite x m)), we get the two (top-level) keys (* 1

plural-hermite-x) and (* 2 power-x). The advantage of
plurals over deeper disambiguation is that there might be
no plurals of that leader in the tables. The doubling of the
number of leaders is a minor drawback, since access to the
set of leaders is by hash-table. Note that every plural leader
is commutative, since it came from a commutative leader,
say *. Rarity sorting of argument leaders might have to be
done at a deeper level in the expression. For example the
integrand (* (cos x)(cos (sqrt x))) yields the keys:

(* 1 plural-cos)

(* 1 plural-cos 1 sqrt)
(* 1 plural-cos 2 identity)

(* 1 plural-cos 1 sqrt identity).

Plurals can also occur at this deeper level. Thus the in-
tegrand (* (cos (+ x a))(cos (+ x b))) yields the keys:

(* 1 plural-cos)
(* 1 plural-cos 1 plural-linear)

(* 1 plural-cos plural-linear plural-const 2).

The 2 shows that the last plural leader has two arguments.

4.5 Linear Combinations

Plurals of multivariate operators cause complications be-
cause they require rarity sorting, not of lists of leaders, but
instead lists of unsorted lists of leaders. For linear combina-
tions, i.e. expressions of the form:

a0 +

NX

i=1

aigi

where the a0 and ai are free of x while each gi depends on
x, one can avoid the complication of multivariate plurals by
rewriting the Lisp expression as a list with a new leader. The
rewritten form is (lincomb g1 g2 : : : gn (a1 a2 : : : an a0)).
When the fgig items are rearranged in decreasing order of
rarity, the identical rearrangement is performed on the items
a1 : : : an. As one goes deeper in the expression tree, items
gi are assigned leaders, as is the trailing list. Since the trail-
ing list has the least-rare leader const, it remains the last
argument of lincomb.

For example the expression: (/ 1 (+ (* a (cos x)) (*

b (sin x)))) yields the keys

(reciprocal lincomb)

(reciprocal lincomb 1 sin)
(reciprocal lincomb 2 cos)

(reciprocal lincomb 4 const)
(reciprocal lincomb 1 sin identity)

(reciprocal lincomb 2 cos identity).

Should any coe�cient ai be missing from the linear combi-
nation, it is assigned the value 1. If the linear combination
is a simple sum, all the ai are assigned the value 1. If the
additive term a0 is missing, it is assigned the value 0. Thus
when a + is encountered, the resulting sum is decomposed
into a polynomial, a linear combination, and a residual. In
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the residual are included any gi which are products of func-
tions of x.

A treatment similar to the treatment of linear combi-
nations can be applied to plurals of multivariate functions
whose �rst argument depends on x but whose subsequent
arguments are free of x. (All the multivariate functions
which we have so far encountered in integral tables are, save
products, of this form.) One encounters such multivariate
plurals in treating integrands containing products of Bessel
functions whose x-dependent argument is a function of x.
(If the x-dependent argument is x alone, say (bessel-j x
(* 2 n)) it is rewritten (bessel-j-x (* 2 n)) as was done
above for the Hermite polynomial.)

5 Performance of the Integral Table Lookup Program

For three separate sets of data, the integrals in the set were
processed: their keys extracted and stored in an appropri-
ate hash-table. Then each integrand, and where applicable,
limits of integration, was transformed into a user request, in
order to see if an integral once inserted could be found. In
all cases it was found and a list of corresponding acquisition
numbers returned. The returned list might contain more
than one member because di�erent choices for the param-
eters in each integrand may make more than one pattern
match. On more detailed examination (not done in this
testing), we might �nd that fewer or even no entry in the
returned list corresponds to the user's integral, either be-
cause one or more of the user's parameters are inconsistently
bound to values, or because restrictions on the parameters
in the table are violated by the user's parameters.

For each set of integrals we determined the mean time
to access the integral, statistics on the length of the acqui-
sition number list corresponding to the request, and statis-
tics on the complexity of the integrand. That complexity is
measured by the sum of the lengths of all keys in the last
stage of key extraction. Weighting each key by its length
takes into account intermediate stages of key extraction.
Last stage keys are described by having const, identity,

plural-const or plural-identity as the last leader in the
key. This complexity measure considers both depth and
breadth of the integrand expression tree. The length of a
given key indicates its depth, while the number of keys in-
dicates breadth.

The �rst data set was a machine readable form of the
complete CRC integral tables, supplied to us by Daniel Zwill-
inger, editor for the CRC mathematical tables. As an initial
test, we converted all the integrands (de�nite or inde�nite)
to Lisp form. We then considered each integral as inde�nite
(in order to exercise the key extraction) and removed extra
copies of those integrands which appeared as both de�nite
and inde�nite forms. This gave us 685 entries in the ta-
ble. Some of the more general entries subsume particular
ones which were nevertheless included as a matter of conve-
nience. This predictably increases the number of \hits".

The total time recorded for looking up all 685 entries was
5.75 seconds3 . For repeatability we should also quote times
that exclude \garbage collection" (Lisp's storage realloca-
tion time; this is a kind of background operation whose cost
which varies depending on memory size and other factors,
but in modern Lisp implementations is usually less than 20%
of the time). In this case the time is 4.73 seconds, or about
6.9 ms. per integrand. Our measurement of the temporary

3Unless otherwise noted, all parts of the computer program were
done on a Sun Microsystems Sparc 1+ workstation using Allegro
Common Lisp 4.2.

storage used is shows an average of 278 \cons cells" and (by
coincidence) 278 words of other storage (for temporary stor-
age of arithmetic results) are used per integrand. Recently
we ran the identical program (recompiled but otherwise un-
changed) on a faster Hewlett-Packard 9000/712 workstation.
In this case the average time was 2.77 ms. per integrand. We
expect that this speed-up (a factor of 2.5) would be uniform
across all of our tests.

In looking up each integral in the CRC data set, the
number of hits varied substantially. 321 examples had one
(exactly correct) hit; in 109 cases there were 5 or more
matches. The worst case was that of 14 integrands dif-
fering only by parameters: these were lumped together in
our search4. How complex were these to �nd? The most
complex key-signature had a complexity of 12, exhibited by
6 examples. A complexity of 8 or less accounts for 590 of
the 685 examples; a complexity of 4 or less is su�cient for
82 examples. This complexity translates into the number of
hash-table accesses needed for the lookup. Complex keys are
somewhat pricier to look up. These statistics reect a rela-
tively high redundancy for this table, as well as the inclusion
of many simple examples.

The second data set consisted of 56 integrals, both def-
inite and inde�nite, taken from books of integral tables.
These integrals were collected by R. Fateman over the past
two years, because each stumped one or more of the common
computer algebra systems5.

Although these integrals were not selected for the occur-
rence of plurals, about ten percent of the integrals involved
plural keys.

The average time to �nd these integrals, after they were
inserted, was 6.25 ms. per integral, exclusive of garbage col-
lection. Of the 56 cases, 37 had only one hit, 16 had but two
hits, and 3 had three hits. None had more than three hits.
This shows the e�ect of avoiding deliberate redundancy.

The complexity statistics can be summarized this way:
The greatest complexity was 16, achieved by only one in-
tegrand. Seven integrands had a complexity of 8 or more.
Twenty-six had a complexity of 5 or more, and six had a
complexity of 2, the minimum complexity. This distribu-
tion of complexities is not vastly di�erent from that of the
�rst data set, many of whose integrals could be obtained by
algorithmic methods. This suggests that the reason that the
integrals of the second set could not be obtained algorithmi-
cally is not the complexity of the integrand but rather the
rarity of the leaders.

The third data set of integrals was taken from one sec-
tion of Gradshteyn's table [4]. It focused on products of
Bessel functions. These integrands were considered compli-
cated and involved plurals of multivariate functions. It was
chosen because of its complexity and because the integrals
were considered su�ciently specialized that encoding them
by algorithmic methods would have rather slim payo� com-
pared to just looking them up.

As expected, the average time to �nd these integrals was
higher than the others with an average of 11.8 ms. There
was only one hit per integrand for each case. The complex-
ity distribution was also greatly changed: Of the seventeen
cases, the largest complexity was 22, and eleven cases had
a complexity of 8 or more. Only one integrand had a com-
plexity of 3 and one of complexity 4.

4These were various instances of a power of x times the reciprocal
of the square-root of a quadratic, many of which were included for
convenience of the human user of the tables.

5In the time since these were discovered and reported to the pro-
prietors of the various systems, some, but not all, have been \�xed".
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For each of the three previous data sets the integrals
were inserted into the table and then the identical integrands
were searched. In the �nal test we used the CRC integrals
but used an independent set of 179 integrals used to rou-
tinely test the integration programs in Macsyma, Reduce,
and Maple. These were taken from various library demon-
stration �les for Macsyma, and from published test suites
for Reduce. A selected subset of the Mathematica integral
tests provided by WRI were also included. Some of these
integrals are trivial, but some involve unique capabilities of
the various programs, including integration of special func-
tions. Therefore we could not expect all 179 to be found.
Nevertheless, our initial program found 61 in the CRC ta-
bles.

Since so many of the integrals were shown to be absent
from the table before complete scanning of the integrand,
the mean time to process an integral would be expected
to decrease. In fact it decreased from 6.9 to 4.2 msec. per
integral.

Examining the failures of the lookup in the fourth data
set revealed a defect in our program, which is now �xed.
An integral stored in the table containing a multiplicative
constant was sometimes (but not generally) overlooked when
the user requested a special case of the integral with that
constant set to 1. For example the stored integrand (* (foo
x)(bar (* a x))) would be overlooked if the user asked for
the integral (* (foo x)(bar x)). (That is, with a being 1 )
Correcting this defect increased the number of matches from
61 to 74.

Another reason for failures of matching was that the
queries were not simpli�ed before searching. Simpli�cation
is a part of any computer algebra system but was omitted
from our Lisp development. We converted our Lisp-based
internal form to a variant form corresponding to Macsyma's
usual form6 and ran it through that system's simpli�er. Af-
ter reconverting to our format we found 17 new integrands
were matched, raising the total to 91 of the original 179.

The lookup failed in some cases because the stored ta-
ble was clearly incomplete. In others, the (default) Mac-
syma simpli�er was inadequate to map the forms to the
appropriate simpler case in the table. More powerful tools
(e.g. rational simpli�cation such as the ratsimp command
in Macsyma) were needed.

Converting integrands into Macsyma form allowed us to
try Macsyma's symbolic integrator. Macsyma (version 419
from Macsyma Inc.) was able to integrate all but 28 of the
179 integrands.

Counting only the successful integrations, the timings
for the Macsyma integrations were: The integrand fastest
to integrate took 16.7 msec, (1/60 sec. or one clock tick in
our timer) while the slowest took 82 sec. The median of
the 161 integrands was 0.583 sec. The fastest quartile took
0.183 sec. or less. The slowest quartile took 2.71 sec. or
more. Among those problems not solved, one integrand in
the data set was declared unmatched after Macsyma failed
to �nd it in 20 minutes. Maple VR3 found this integral in
1.05 sec.

Of course the computer systems are in some cases run-
ning a decision procedure that leads one to conclude facts
about the \non-integrability in closed form as a function of
elementary functions." This can take a long time. By con-
trast table look-up succeeds quickly or quickly announces
failure.

6We use forms like (+ a (* b c)) while Macsyma uses forms like
((mplus) a ((mtimes) b c)).

Additionally We are putting our program at an advan-
tage because in these times we are not requiring it to match
parameters and simplify. By contrast, the times for com-
puter algebra systems include �nishing up the answer: sub-
stituting values for parameters in the formulas. This is not
expected to be expensive, however, once the formula is iden-
ti�ed, and we describe this next.

An extension of the same matching techniques can be
used to match the user parameters with those of the match-
ing integrals stored in the table. The parameter match is fa-
cilitated by the principal technique described above, which
decomposes the integrand into fragments. Each fragment
contains a key and a number of parameter-containing slots.
For example, the integrand (* (expt x m)(foo x)) yields
the �nal fragments: ((* 1 foo identity) x) and ((* 2
power-x const) m). The �rst �nal fragment contains no
parameters and is removed from consideration. The sec-
ond fragment contains, in addition to the key (* 2 power-x

const) the slot containing the parameter m. In general each
fragment contains but one slot. One exception is a frag-
ment whose key contains the item polyn. This indicates a
polynomial, and there is a slot for each coe�cient in the
polynomial.

Binding the user parameters to the parameters of the
stored integral is a two step process. The �rst step is equat-
ing the �llers of the slots in the stored integrand with the
corresponding �llers of the slots of the user integrand. The
second step is solving the set of equations for the stored pa-
rameters in terms of the user parameters. Before doing the
second step, the equations of the �rst step can be processed
to eliminate tautologies and redundant equations. Incon-
sistent binding equations cause rejection of the integral For
example, if the user requested (* (expt x 2) (foo x)) we
might retrieve the formula (* (expt x 3)(foo x)), but the
binding equation would be 2 = 3, a numerical inconsistency.
That candidate formula would be removed from considera-
tion. If no candidate integrals remain, then the user inte-
gral is declared absent from the table. Work on solving the
remaining binding equations, yielding bindings on the pa-
rameters in the stored integral and restrictions on the user
parameters is now in progress.

Two of the referees have suggested using our cataloging
techniques for formula databases other than integration. This
is possible, with two caveats:

1. Integration formulas have a distinguished variable. Our
hashing technique treats all other symbols as constants.
The obvious kinds of formulas such as well-known iden-
tities that could be used for \simpli�cation" are con-
siderably less structured.

2. Certain kinds of forms do not occur in integral tables.
For example, one does not ordinarily see the integral
of a sum: the individual terms are (perhaps) entries.
One also does not expect certain kinds of products, nor
general plurals of multivariate functions, and thus the
integration program does not match them, although
(at a performance price) such features could be added.

The size of the development version of the program is
3129 source code lines of Common Lisp, excluding comments
(206 function de�nitions).

A copy of the source program is available on request
from the@cs.berkeley.edu or fateman@cs.berkeley.edu.
Other data we used in our experiments (not available for
distribution) includes the CRC integral table provided by
Daniel Zwillinger. This has approximately 870 entries, each
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in a format that can be directed to a typesetting program
or a computer algebra system (or in our case, Lisp). An
approximation of the format of this data is given in the text
format below (For ease in macro-expansion, Zwillinger uses
| rather than \," in his data �le.)

NUMBER: CRC 61

INTEGRAND: \frac[ dx |a+b*x^2]
MULTIRESULT: \frac[1|2*\sqrt[-a*b]]*\log[\frac[a+x*

\sqrt[-a*b]|a-x*\sqrt[-a*b]]]
CONSTRAINT: \InequalityLT[a*b|0]

MULTIRESULT: \frac[1|\sqrt[-a*b]]*
\arctanh[\frac[x*\sqrt[-a*b]|a]]

CONSTRAINT: \InequalityLT[a*b|0]

The kind of information Zwillinger found necessary for record-
ing the CRC integral table demonstrates the kind of infor-
mation we must extract from typeset tables [1], and must
encode in our database.

6 Relation to Other Work

The classi�cation into leaders can be thought of as an elab-
oration of the chapter headings in traditional books of inte-
gral tables, and so our historical precedents start with the
traditional design for such books.

The computer technique of breadth-�rst search is well-
known and has widespread application in arti�cial intelli-
gence, game-playing, optimization, etc. Hashing storage and
pattern matching, as well, are also discussed in (among other
places) Norvig's [5] book.

Augmenting existing integration facilities with lookup
table has been suggested and/or implemented by J. Moses
for his SIN program (1967), and has been used by programs
in Reduce, Mathematica, and probably other computer al-
gebra systems. As far as we can tell, these have always been
small tables oriented toward sequential pattern matching.

7 Conclusion

Results from our implementation suggest that the table lookup
strategy can be implemented with modest code size and ex-
cellent performance. The actual size of the database, even
if fully loaded with thousands of acquisitions from the liter-
ature could be encoded in a few megabytes.

The automation of the whole realm of prior art in integral
tables seems quite plausible, and at some point it may be
required from full-scale computer algebra systems intended
to assist applied mathematicians at a professional level.
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