
The Ramanujan Journal, , 1{15 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Class of Series Acceleration Formulae for

Catalan's Constant

DAVID M. BRADLEY dbradley@cecm.sfu.ca

Department of Mathematics, Dalhousie University, Halifax, N.S., Canada B3H 3J5

Editor: Jonathan M. Borwein

Abstract. In this note, we develop transformation formulae and expansions for the log tangent

integral, which are then used to derive series acceleration formulae for certain values of Dirichlet

L-functions, such as Catalan's constant. The formulae are characterized by the presence of an

in�nite series whose general term consists of a linear recurrence damped by the central binomial

coe�cient and a certain quadratic polynomial. Typically, the series can be expressed in closed

form as a rational linear combination of Catalan's constant and � times the logarithm of an

algebraic unit.
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1. Introduction

Catalan's constant may be de�ned by means of [1]

G :=

1X
k=0

(�1)k

(2k + 1)2
= L(2; �4); (1)

where �4 is the non-principal Dirichlet character modulo 4. It is currently unknown
whether or not G is rational.

The purpose of this note is to develop and classify acceleration formulae for slowly
convergent series such as (1), based on transformations of the log tangent integral.
The simplest acceleration formula of its type that we wish to consider is

G =
�

8
log(2 +

p
3) +

3

8

1X
k=0

1

(2k + 1)2
�
2k
k

� ; (2)

due to Ramanujan [4, 14]. We shall see that Ramanujan's formula (2) is the �rst of
an in�nite family of series acceleration formulae forG, each of which is characterized
by the presence of an in�nite series whose general term consists of a linear recurrence
damped by the summand in (2). In each case, the series evaluates to a rational linear
combination of G and � times the logarithm of an algebraic unit (i.e. an invertible
algebraic integer). Perhaps the most striking example of this phenomenon is

G =
�

8
log

 
10 +

p
50� 22

p
5

10�
p
50� 22

p
5

!
+

5

8

1X
k=0

L(2k+ 1)

(2k + 1)2
�
2k
k

� ; (3)
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where L(1) = 1, L(2) = 3, and L(n) = L(n� 1)+L(n� 2) for n > 2 are the Lucas
numbers [11], (M0155 in [15]).

We shall see that series acceleration results such as (2) and (3) have natural
explanations when viewed as consequences of transformation formulae for the log
tangent integral, although we should remark that Ramanujan apparently derived
his result (2) by quite di�erent methods. The connection with log tangent integrals
is best explained by the equation

G = �
Z �=4

0

log(tan �) d�; (4)

obtained by expanding the integrand into its Fourier cosine series and integrat-
ing term by term. It will be shown that Ramanujan's result (2) arises from the
transformation

2

Z �=4

0

log(tan�) d� = 3

Z �=12

0

log(tan �) d�: (5)

The roccoco formula (3) arises in a similar manner from the the transformation

2

Z �=4

0

log(tan�) d� = 5

Z
3�=20

0

log(tan�) d� � 5

Z �=20

0

log(tan �) d�: (6)

Heuristically, one expects such transformations to succeed because the reduced
range of integration on the right hand side, when re-expanded into a series, provides
a continuous analog of bunching together many terms of the original series.

2. The Log Tangent Integral

There is a limitless supply of transformation formulae for the log tangent integral.
In subsection 2.2, an in�nite family of linear relations, of which both (5) and (6)
are members, will be derived. These relations will be used in conjunction with the
series expansions given in subsection 2.1 to develop a corresponding in�nite family
of series acceleration formulae which includes both (2) and (3) as special cases.

2.1. Series Expansions

We shall be concerned with only two series expansions for the log tangent integral.
These are given in Theorems 1 and 2 below.

Theorem 1. For 0 � x � 1

2
�,

Z x

0

log(tan�) d� = �
1X
k=0

sin((4k + 2)x)

(2k + 1)2
:
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Proof: Expand the integrand into its Fourier cosine series. Integrating term by
term is justi�ed by the fact that the Fourier series is boundedly convergent on
compact subintervals of (0; 1

2
�]:

For us, the signi�cance of Theorem 1 derives mostly from the specialization x = 1

4
,

which yields the relationship (4) between Catalan's constant and the log tangent
integral. On the other hand, the expansion in powers of sines provided by Theorem
2 below is more widely applicable.

Theorem 2. For 0 � x � 1

4
�,

Z x

0

log(tan�) d� = x log(tanx)�
1

4

1X
k=0

(2 sin 2x)2k+1

(2k + 1)2
�
2k
k

� :
Proof: First integrate by parts, rescale, and use the double angle formula for sine:Z x

0

log(tan�) d� � x log(tanx) = �
Z x

0

� sec2 �

tan �
d�

= �
Z

2x

0

� d�

4 tan( 1
2
�) cos2( 1

2
�)

= �
Z 2x

0

� d�

2 sin �

= �
Z

sin(2x)

0

2t sin�1 t
p
1� t2

�
dt

4t2
:

Now employ the power series expansion [6]

2t sin�1 t
p
1� t2

=

1X
k=1

(2t)2k

k
�
2k
k

� ; jtj < 1;

and integrate term by term. The result follows.

In addition to Theorem 1, the following representations were also more or less
known to Ramanujan, and can be easily veri�ed by di�erentiation:Z x

0

log(tan�) d� = x log(tanx) +

1X
k=0

(�1)k+1(tanx)2k+1

(2k + 1)2
; 0 � x � 1

4
�;

Z x

0

log(tan�) d� = ( 1
2
� � x) log(cosx)�

1X
k=1

(cosx)k(sinkx)

k2
; 0 � x � 1

2
�;

Z x

0

log(tan�) d� = x log(tanx) + 1

2
� log(2 cosx)

�
1X
k=0

�
2k

k

�
(cosx)2k+1 + (sinx)2k+1

4k(2k + 1)2
; 0 � x � 1

2
�:
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2.2. Transformation Formulae

It will be convenient to de�ne

T (r) :=

Z r�

0

log(tan �) d�; 0 � r � 1

2
: (7)

Our development will provide two distinct transformation formulae for the T -
function: the multiplication formula, which expresses T at odd multiples of the
argument in terms of a multitude of other T -values; and the reection formula,
which makes it possible to restrict the domain to the interval 0 � r � 1

4
, and which

will e�ect a number of simpli�cations in our intermediate calculations, as we shall
see.

Theorem 3. For all 0 � r � 1

2
, the reection formula

T (r) = T ( 1
2
� r)

holds.

Proof: First, note that T ( 1
2
) = 0. This can be seen either by putting x = 1

2
� in

Theorem 1, or by observing that

T ( 1
2
) =

Z �=2

0

log(tan�) d� =

Z �=2

0

log(sin �) d� �
Z �=2

0

log sin( 1
2
� � �) d� = 0:

It follows that

T (r) =

Z r�

0

log(tan�) d� =

Z �=2

0

log(tan�) d� �
Z �=2

r�

log(tan �) d�

=

Z
0

�=2�r�

log(tan( 1
2
� � �)) d�

=

Z
0

�=2�r�

log(cot�) d�

=

Z
(1=2�r)�

0

log(tan�) d�

= T ( 1
2
� r);

as stated.

To prove the multiplication formula, we require the following product expansion
for the tangent function.

Lemma 1. Let m = 2n+ 1 be an odd positive integer, and let x 2 R. Then

tan(mx)

tan(x)
=

nY
j=1

tan

�
j�

m
+ x

�
tan

�
j�

m
� x

�
:
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Proof: Let w = eix. Then

tan(mx)

tan(x)
=

�
w2m � 1

w2m + 1

��
w2 + 1

w2 � 1

�

=

nY
k=1

�
w2 � e2k�i=m

w2 � e(2k�1)�i=m

��
w2 � e�2k�i=m

w2 � e�(2k�1)�i=m

�

=

nY
k=1

�
we�k�i=m � w�1ek�i=m

we�(2k�1)�i=2m � w�1e(2k�1)�i=2m

�

�
�

wek�i=m �w�1e�k�i=m

we(2k�1)�i=2m �w�1e�(2k�1)�i=2m

�

=

nY
k=1

sin(k�=m� x) sin(k�=m+ x)

sin((2k � 1)�=2m� x) sin((2k� 1)�=2m+ x)
:

After expressing the the sines in the denominator in terms of cosines and letting
j = n� k + 1, we have

tan(mx)

tan(x)
=

nY
j=1

sin(j�=m� x) sin(j�=m+ x)

cos(j�=m� x) cos(j�=m+ x)

=

nY
j=1

tan

�
j�

m
+ x

�
tan

�
j�

m
� x

�

as required.

Theorem 4. Let m = 2n + 1 be an odd positive integer, and let 0 � r � 1=(2m).
Then the multiplication formula

T (mr) = m

nX
j=0

T

�
j

m
+ r

�
�m

nX
j=1

T

�
j

m
� r

�

holds.

Proof: By Lemma 1,

T (mr) =

Z mr�

0

log(tan�) d� = m

Z r�

0

log(tan(mx)) dx

= m

Z r�

0

log(tanx) dx+m

nX
j=1

Z r�

0

log tan

�
j�

m
+ x

�
dx

+m

nX
j=1

Z r�

0

log tan

�
j�

m
� x

�
dx

= mT (r) +m

nX
j=1

�
T

�
j

m
+ r

�
� T

�
j

m

��
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�m
nX

j=1

�
T

�
j

m
� r

�
� T

�
j

m

��

= m

nX
j=0

T

�
j

m
+ r

�
�m

nX
j=1

T

�
j

m
� r

�
;

as stated.

To obtain transformations such as (5) and (6), we apply the reection formula
(Theorem 3) and the multiplication formula (Theorem 4) with r chosen so as to
express T ( 1

4
) in terms of the T -function at values of the argument less than 1

4
.

The resulting transformations are distinguished according to the parity of n in the
multiplier m = 2n+ 1.

Theorem 5. Let n be an odd positive integer. Then

G = �T
�
1

4

�
=

2n+ 1

n + 1

nX
j=1

(�1)jT
�
2j � 1

8n+ 4

�
:

Proof: Let p be a nonnegative integer. In the multiplication formula, let n =
2p+ 1, so that m = 4p+ 3, and put r = 1=(4m). Then

T

�
1

4

�
= m

pX
j=0

�
T

�
4j + 1

4m

�
+ T

�
4(n� j) + 1

4m

��

�m
pX

j=1

�
T

�
4j � 1

4m

�
+ T

�
4(n� j + 1)� 1

4m

��

�mT

�
4(p+ 1)� 1

4m

�
:

Applying the reection formula (Theorem 3) to each term in the preceding sums
yields the simpli�cation

T

�
1

4

�
= 2m

pX
j=0

T

�
4j + 1

4m

�
� 2m

pX
j=1

T

�
4j � 1

4m

�
�mT

�
1

4

�
:

The preceding expression can be simpli�ed further by combining the two sums into
a single alternating sum. Thus,

�T
�
1

4

�
=

2m

m+ 1

2p+1X
j=1

(�1)jT
�
2j � 1

4m

�
:

Writing p and m in terms of n completes the proof.

Theorem 6 below addresses the alternative case in which the multiplier is congru-
ent to 1 modulo 4.
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Theorem 6. Let n be an even positive integer. Then

G = �T
�
1

4

�
=

2n+ 1

n

nX
j=1

(�1)j+1T

�
2j � 1

8n + 4

�
:

Proof: Let p be a nonnegative integer. In the multiplication formula let n = 2p,
so that m = 4p+ 1, and again put r = 1=(4m). Then

T

�
1

4

�
= m

p�1X
j=0

�
T

�
4j + 1

4m

�
+ T

�
4(n� j) + 1

4m

��

�m
pX

j=1

�
T

�
4j � 1

4m

�
+ T

�
4(n� j + 1)� 1

4m

��

+mT

�
4p+ 1

4m

�
:

Applying the reection formula (Theorem 3) to each term in the preceding sums
yields the simpli�cation

T

�
1

4

�
= 2m

p�1X
j=0

T

�
4j + 1

4m

�
� 2m

pX
j=1

T

�
4j � 1

4m

�
+mT

�
1

4

�
:

The preceding expression can be simpli�ed further by combining the two sums into
a single alternating sum. Thus,

�T
�
1

4

�
=

2m

m� 1

2pX
j=1

(�1)j+1T

�
2j � 1

4m

�
;

Writing p and m in terms of n completes the proof.

Example: Putting n = 1 in Theorem 5 yields the transformation 2T ( 1
4
) = 3T ( 1

12
);

which is a restatement of (5). Putting n = 2 in Theorem 6 yields the transformation
2T ( 1

4
) = 5T ( 3

20
)� 5T ( 1

20
); which is (6).

3. Applications to Series Acceleration

3.1. Catalan's Constant

Theorem 7. Let n be an odd positive integer. For nonnegative integers k, de�ne
a sequence

Fn(k) :=

nX
j=1

�
(�1)n�j+12 cos

�
j�

2n+ 1

��k
;
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and let

un :=

nY
j=1

�
tan

�
2j � 1

8n+ 4

�
�

�(2j�1)(�1)j

:

Then un is a unit algebraic integer, and Catalan's constant has the series accelera-

tion formula

G =

�
�

4n + 4

�
log un �

�
2n+ 1

4n+ 4

� 1X
k=0

Fn(2k + 1)

(2k + 1)2
�
2k
k

� :

Proof: Apply Theorems 1 and 2 to the right hand side of Theorem 5. Thus,

G =

�
2n+ 1

n + 1

� nX
j=1

(�1)j
�
2j � 1

8n+ 4

�
� log

�
tan

�
2j � 1

8n+ 4

�
�

�

�
�
2n + 1

4n + 4

� nX
j=1

(�1)j
1X
k=0

(2 sin((2j � 1)�=(4n+ 2)))
2k+1

(2k + 1)2
�
2k
k

�
=

�

4

nX
j=1

(�1)j
�
2j � 1

n+ 1

�
log

�
tan

�
2j � 1

8n+ 4

�
�

�

�
�
2n + 1

4n + 4

� 1X
k=0

1

(2k + 1)2
�
2k
k

� nX
j=1

(�1)j
�
2 sin

�
2j � 1

4n+ 2

�
�

�2k+1

: (8)

The inner sum in (8) simpli�es somewhat if the sines are expressed in terms of
cosines. Thus,

nX
j=1

(�1)j
�
2 sin

�
2j � 1

4n+ 2

�
�

�2k+1

=

nX
j=1

(�1)j
�
2 cos

�
2n+ 1� (2j � 1)

4n+ 2

�
�

�2k+1

=

nX
j=1

(�1)j
�
2 cos

�
n� j + 1

2n+ 1

�
�

�2k+1

=

nX
j=1

(�1)n�j+1

�
2 cos

�
j�

2n+ 1

��2k+1

: (9)

Substituting (9) into (8) completes the derivation of the stated formula.

It now remains to show that un is indeed an algebraic unit (i.e. an invertible
algebraic integer) as claimed. Let x = (2j � 1)�=(8n+ 4). Since the units in any
ring form a multiplicative group, it su�ces to show that the numbers t := tanx are
all algebraic units, or equivalently, that the numbers t satisfy monic polynomials
with integer coe�cients and constant term �1.
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From the addition formula for the tangent function, one sees that tan(kx) is
a rational function of t for each nonnegative integer k. Indeed, if polynomials
pk; qk 2 Z[t] are de�ned by the recursion�

pk+1

qk+1

�
=

�
1 t

�t 1

��
pk

qk

�
; for k � 0;

�
p0

q0

�
=

�
0

1

�
; (10)

then for all nonnegative integers k,

tan((k + 1)x) =
tanx+ tan(kx)

1� tan(x) tan(kx)
=

tqk + pk

qk � tpk
=

pk+1

qk+1

:

Since tan((2n + 1)x) = tan((2j � 1)�=4) = (�1)j+1, it follows that t = tan((2j �
1)�=(8n+ 4)) satis�es the polynomial equation

p2n+1(t)� q2n+1(t) = 0:

It remains to show that p2n+1 � q2n+1 has both highest degree coe�cient and
constant coe�cient equal to �1.
Let k be an odd positive integer. From the recursion (10), it follows that

pk+2 + qk+2 = (1� 2t� t2)pk + (1 + 2t� t2)qk; (11)

pk+2 � qk+2 = (1 + 2t� t2)pk � (1� 2t� t2)qk: (12)

An easy induction shows that the respective degrees of pk and qk are k and k � 1,
for all odd positive integers k. This fact, combined with a second induction, shows
that the highest degree coe�cient of pk � qk is equal to �1 for all odd positive
integers k. Finally, (11) and (12) show that

pk+2(0)� qk+2(0) = pk(0)� qk(0)

and so a �nal induction proves that pk� qk has constant coe�cient equal to �1 for
all odd positive integers k.

Remark. Suppose n is �xed, and we partition the algebraic numbers

(�1)n�j+12 cos

�
j�

2n+ 1

�

into disjoint sets of mutual conjugates. Then the product of the minimum poly-
nomials for each set of conjugates is precisely the characteristic polynomial of the
linear recurrence satis�ed by the sequence fFn(k)g1k=0

.

Example: Putting n = 1 in Theorem 7 gives

G = �
�

8
log
�
tan

� �

12

��
+

3

8

1X
k=0

(2 cos(�=3))2k+1

(2k + 1)2
�
2k
k

� ;

which is Ramanujan's formula (2).
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Theorem 7 has its even counterpart in Theorem 8 below.

Theorem 8. Let n be an even positive integer. For nonnegative integers k, de�ne

a sequence

Fn(k) :=

nX
j=1

�
(�1)j2 cos

�
j�

2n+ 1

��k
;

and let

un :=

nY
j=1

�
tan

�
2j � 1

8n+ 4

�
�

�(2j�1)(�1)j+1

:

Then un is a unit algebraic integer, and Catalan's constant has the series accelera-

tion formula

G =
� �

4n

�
log un +

�
2n+ 1

4n

� 1X
k=0

Fn(2k + 1)

(2k + 1)2
�
2k
k

� :
We omit the proof of Theorem 8, as it closely mimicks the proof of Theorem 7.

Instead, we derive the formula (3) which relates Catalan's constant and the Lucas
sequence.

Corollary. Let L(1) = 1, L(2) = 3, and L(n) = L(n � 1) + L(n � 2) for n > 2
be the Lucas numbers. Then Catalan's constant has the series acceleration formula

G =
�

8
log

 
10 +

p
50� 22

p
5

10�
p
50� 22

p
5

!
+

5

8

1X
k=0

L(2k + 1)

(2k + 1)2
�
2k
k

� :

Proof: Put n = 2 in Theorem 8. Letting � := 2 cos(2�=5) = 1

2
(
p
5 � 1) and

� := 2 cos(�=5) = 1

2
(
p
5 + 1), we have

G =
�

8
log

�
tan(�=20)

tan3(3�=20)

�
�

5

8

1X
k=0

�2k+1 � �2k+1

(2k + 1)2
�
2k
k

� :
Now recall [11] that

L(k) =

 
1 +

p
5

2

!k

+

 
1�

p
5

2

!k

for all nonnegative integers k. It follows that

G =
�

8
log

�
tan(�=20)

tan3(3�=20)

�
+

5

8

1X
k=0

L(2k+ 1)

(2k + 1)2
�
2k
k

� ;
and so it remains only to verify the non-trivial denesting relationship



CATALAN'S CONSTANT 11

tan(�=20)

tan3(3�=20)
=

10 +
p
50� 22

p
5

10�
p
50� 22

p
5
: (13)

To express the tangent values in (13) in terms of radicals, we follow [13], p. 50. Let
t := tan(�=20). Then

tan
3�

20
=

3t� t3

1� 3t2
= tan

�
�

4
�

2�

20

�
=

1� 2t=(1� t2)

1 + 2t=(1� t2)
:

Equating the previous rational expressions in t gives the quintic equation

(t� 1)5 = 20t2(t� 1); or (t� 1)2 = 2t
p
5;

since t 6= 1. Putting t = (1� ")=(1 + "), it follows that "
p
5 + 2

p
5 =

p
5, and

tan
�

20
=

p
5 + 2

p
5�

p
5p

5 + 2
p
5 +

p
5
; tan

3�

20
=

p
5 + 2

p
5� 1p

5 + 2
p
5 + 1

:

Therefore, we may write

tan(�=20)

tan3(3�=20)
=

 p
5 + 2

p
5 + 1p

5 + 2
p
5� 1

!3 p
5 + 2

p
5�

p
5p

5 + 2
p
5 +

p
5
=

a+ b

a� b
; (14)

where a and b are to be determined. Cross multiplying and expanding both sides,
we have

5b(3 +
p
5) = a(3�

p
5)

q
5 + 2

p
5: (15)

Since (3�
p
5)=(3 +

p
5) = 1

2
(7� 3

p
5), we may write (15) in the form

10b = a

q
(7� 3

p
5)2(5 + 2

p
5) = a

q
50� 22

p
5:

Therefore, if in (14), we take a = 10 and b =
p
50� 22

p
5, then (13) holds, and

the proof is complete.

Remark. It is unlikely that (13) will simplify any further. Zippel [16] gives
two formulae (caution: there are misprints) for denesting expressions involving
square roots. Borodin et. al. [5] show that these are the only two ways that
such expressions can be denested over the rational number �eld. In particular,p
50� 22

p
5 cannot be denested, because 502�5�222 = 80 and 222�52�502�5 =

�400 are not squares of rational numbers.

3.2. Some Additional Examples

One can derive additional acceleration formulae by specializing the value of x in
Theorems 1 and 2 and equating the two results. In general, convergence improves
as the value of x decreases. The following selections provide a representative sample
of perhaps the most interesting results that can obtained using this approach.
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Example: Putting x = 1

4
� gives (cf. (1))

G = L(2; �4) =
1

2

1X
k=0

4k

(2k + 1)2
�
2k
k

� ; (16)

which Ramanujan [4] derived previously by other methods. We remark that (16)
is actually a series deceleration result. The reason for the poor convergence is we
have used the trivial transformation T ( 1

4
) = T ( 1

4
) which fails to exploit the reduced

range of integration present in the other transformations.

Example: Putting x = 1

6
� gives

L(2; �6) =
�
p
3

18
log 3 +

1

2

1X
k=0

3k

(2k + 1)2
�
2k
k

� ;
where �6 is the non-principal Dirichlet character modulo 6 (i.e. �6(5) = �1).

Example: Putting x = 1

8
� gives

L(2; �8) =
�
p
2

8
log(1 +

p
2) +

1

2

1X
k=0

2k

(2k + 1)2
�
2k
k

� ;
where �8 is the Dirichlet character modulo 8 given by �8(1) = �8(3) = 1, and
�8(5) = �8(7) = �1.

Acknowledgments

I'm grateful to Chris Hill, Jonathan Borwein, Petr Lisonek, and John Zucker for
their helpful observations.

Appendix

Here, we outline the role that inverse symbolic computation { in particular, Maple's
integer relations algorithms { played in the discovery process.
A vector ~v = (v1; v2; : : : ; vn) of real numbers is said to possess an integer relation

if there exists a vector ~a = (a1; a2; : : : ; an) of integers not all zero such that the
scalar product vanishes, i.e. a1v1+ a2v2+ � � �+ anvn = 0. In the past two decades,
several algorithms which recover ~a given ~v have been discovered [2, 3, 9, 10, 12].
One of these, \LLL" [12], has been implemented in Maple V, and with its help,
the authors of [7] and [8] discovered new formulae for values of the Riemann Zeta
function. The obstacle which initially confounded e�orts to extend the classical
results

�(2) = 3

1X
k=1

1

k2
�
2k
k

� ; �(3) =
5

2

1X
k=1

(�1)k�1

k3
�
2k
k

� ; �(4) =
36

17

1X
k=1

1

k4
�
2k
k

�
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to higher zeta values was circumvented by the introduction of harmonic sums into
the search space. Thus, for example, by searching for an identity of the form

�(7) = r1

1X
k=1

(�1)k+1

k7
�
2k
k

� + r2

1X
k=1

(�1)k+1

k5
�
2k
k

� k�1X
j=1

1

j2
+ r3

1X
k=1

(�1)k+1

k3
�
2k
k

� k�1X
j=1

1

j4
;

we [7] found

�(7) =
5

2

1X
k=1

(�1)k+1

k7
�
2k
k

� +
25

2

1X
k=1

(�1)k+1

k3
�
2k
k

� k�1X
j=1

1

j4
;

and in�nitely many more, as well as some lovely integral and hypergeometric series
evaluations, besides.

We suspected that a similar reverse-engineered approach might work for certain
Dirichlet L-series values, such as Catalan's constant, but searching for similar vari-
ations on Ramanujan's example (2) failed. In view of the ornate complexity of (3)
and its relatives (Theorem 7 and Theorem 8), we can now understand the reason
for this failure. For a direct attack, one would have had to introduce, among other
things, logarithms of algebraic units into the model, so that in e�ect, one would
have needed to know beforehand the formula one was searching for in order to �nd
it. Models based on the inverse tangent integral [13, 14] su�er the same drawbacks.
On the other hand, the model based on the log tangent integral is suited perfectly.

The author arrived at the log tangent integral model while attempting to give
an alternative proof of Ramanujan's acceleration formula (2). It was found that
the proof reduced to that of proving the integral transformation (5). Isolating the
T -function of section 3 for study was then a natural choice. After directing Maple's
integer relations �nding algorithms to hunt for linear relations amongst various
T -values, the following list was produced:

T (1=2) = 0; (A.1)

T (1=3) = T (1=6); (A.2)

T (1=8) = T (3=8); (A.3)

3T (4=9) = T (1=3) + T (2=9)� 3T (1=9); (A.4)

T (2=10) = T (3=10); (A.5)

T (1=10) = T (2=5); (A.6)

T (1=12) = T (5=12); (A.7)

2T (1=4) = 3T (1=12); (A.8)

T (3=14) = T (4=14); (A.9)

T (5=14) = T (1=7); (A.10)

T (1=14) = T (3=7); (A.11)

3T (2=5) = �3T (1=15)+ T (1=5)+ 3T (4=15); (A.12)

3T (7=15) = �3T (2=15)+ 3T (1=5)+ T (2=5); (A.13)

15T (1=15) = 15T (2=15)� 5T (1=5)+ 9T (1=3)� 10T (2=5); (A.14)
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T (3=16) = T (5=16); (A.15)

T (1=16) = T (7=16); (A.16)

T (2=9) = T (5=18); (A.17)

T (1=9) = T (7=18); (A.18)

T (1=18) = T (4=9); (A.19)

3T (1=18) = 3T (5=18)+ T (1=3)� 3T (7=18); (A.20)

T (3=20) = T (7=20); (A.21)

T (1=20) = T (9=20); (A.22)

5T (3=20) = 5T (1=20)+ 2T (1=4) = 5T (7=20): (A.23)

Aside from trivial substitutions arising from the reection formula (Theorem 3),
the list evidently exhausts all linear relations amongst T -values with rational argu-
ments having denominator no greater than 20. In fact, each list entry is a conse-
quence of the reection formula and the multiplication formula (Theorem 4). For
example, (A.4) follows from the multiplication formula with m = 3 and r = 1=9.
The slightly trickier (A.14) follows from three applications of the multiplication
formula. One takes m = 3 with r = 1=15 and r = 2=15, and then one takes m = 5
with r = 1=15. This gives three equations. Multiplying the �rst through by 5=2,
the second through by �5=2, and the third through by 3=2 and adding the three
resulting equations gives (A.14).
From the list, it was easy to deduce and subsequently prove the reection formula.

At the same time, Chris Hill of the University of Illinois used the m = 3 case of
Lemma 1 to prove (5) i.e. (A.8). This broke the dam, leading to the proof of Lemma
1, the multiplication formula (Theorem 4), and the remaining results of sections 2
and 3.
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