
Page 1

Almost all software testing is futile!

Mike Holcombe and Florentin Ipate.
Formal Methods and Software Engineering Research Group (FORMSOFT),

Department of Computer Science,
University of Sheffield,

Regent Court,
211, Portobello Street,
Sheffield, S1 4DP, UK.

Abstract. All software systems are subject to testing - for some of them testing
is the major activity in the project. Testing, however, rarely gets the attention it
deserves from researchers and developers, partly because its foundations are
very weak and ill-understood. The principal purpose of testing is to detect (and
then remove) faults in a software system. A number of techniques for carrying
out testing, and in particular, for the generation of test sets exist. Many sophis-
ticated (and expensive) tools are available on the market and many look to
these to provide a solution to the problems of building fault-free systems. We
consider the problem of fault detection and note that few, if any, of the existing
methods really address the real issues. In particular no methods allow us to
make any statement about the type or precise number of faults that remain
undetected after testing is completed. Thus we cannot really measure the effec-
tiveness of our testing activities in any rigorous way. However, by considering
testing from a straightforward, theoretical point of view we demonstrate that a
new method for generating test cases can provide a more convincing approach
to the problem of detecting ALL faults and allows us to make sensible claims
about the level and type of faults remaining after the testing process is com-
plete.

Key words: Testing, faults, testability, test coverage, finite state machine testing, X-machines.

Introduction.

The purposes of software testing have been discussed in a number of places and we will
consider a few of the interesting statements and claims that have been made about testing.

Myers [1] states that the purpose of testing is to detect faults and the definition of a good
test is one that uncovers faults. The implication clearly being that a test that fails to uncover
any existing faults is inadequate in some sense. This emphasis on the finding of faults could
lead one to assume that the more faults detected the better the test. However, one could argue
that a test that uncovers a single serious fault might well be more successful than a test that
uncovered a number of trivial faults. This immediately leads us into the vexed question of what
is a “serious fault” and how these might be defined and identified!

Dijkstra [2] pours scorn on the whole concept of testing and insists that all a test can tell us
is that the system has failed - it cannot tell us that the system is correct. This is true of most of
the testing methods currently in use and is clearly a major drawback. Dijkstra’s belief, shared
by many in the formal methods community is that formal verification, that is mathematical

Version 1.2. 18/3/95

Page 2

proofs that the system meets all the conditions required of it, is the only solution.1 However,
formal verification has not been able to demonstrate that it is “scalable” and practical in the
context of the massive complexity of today’s applications. Furthermore, some example sys-
tems which have supposedly been formally verified have been shown to have faults as a result
of testing! (See [6])

There is a case for hoping that building systems from dependable components will over-
come some of these problems and it may be possible that current testing or formal verification
methods can be used together to provide the foundation for a scientifically based engineering
approach to software development. At present, however, there is little sign of this happening.
The software engineering industry is spending more and more time on testing in the hope of
ensuring quality and yet real scientific evidence that they are being successful is minimal.

Object-oriented methods are often held to be a great advance in the pursuit of quality soft-
ware because of their foundation on the principle of reusability. However, it is pointed out in
Binder [3] that, far from obviating the need for so much testing, the object-oriented methods
require very substantial amounts of effort devoted to the task. Inheritance and dynamic binding
provide many opportunities for introducing faults, the large numbers of interfaces between
objects and the loose state control environment also compound the problem. Binder states “the
hoped for reduction in object-oriented testing due to reuse is illusory”. In fact many new test-
ing issues are raised by this paradigm. As a result the need for testing will undoubtedly grow
and the industry will become more and more dependent on the successful pursuit this activity.

One could argue that our current testing methods are not based on a firm scientific approach
or theory, they tend to be methods that have evolved, informal ad hoc approaches that have
been rationalised after the event rather than carefully constructed engineering methods based
on a defensible well-founded strategy. We test because we need to but we do not demand from
testing the sort of rigour that the product demands. Testing must be made more to do with reas-
suring clients and users than with reassuring testers, designers and their managers!

One of the claims made here and elsewhere, is that this will not be possible unless there is a
more integrated approach to the design process; and until the testing methods used satisfy
some fundamental requirements dictated by a careful investigation of the nature of software
systems.

Although it might appear that we are belittling the achievements of software testing as a
process this is not the intention. Clearly the application of existing testing methods has resulted
in the identification and subsequent removal of many important faults in software systems,
however the question remains about what faults are left undetected until the system is in serv-
ice. It is to try to address this issue that we now turn.

2. Fundamental issues of correct software design.

One of the most successful approaches to scientific understanding is the reductionist philos-
ophy. This entails the reduction of one problem to the solution of simpler ones or to the under-
standing of a lower level, perhaps more microscopic situation. Since the current popular design

1. One could imagine a similar paper entitled “Almost all formal verification is futile”
exploring some of the fallacies and illusions pertaining to that activity!

Page 3

methods in software engineering tend to emphasise the construction of systems from modules,
objects and other simpler components one might hope that a similar reductionist approach to
testing might be possible. This is not addressed by the different techniques of unit test and sys-
tem/integration test or the test management process, it is much more fundamental than that. In
such a reductionist approach we would consider a system and produce a testing regime that
resulted in the complete reduction of the test problem for the system to one of looking at the
test problem for the components or reduced parts. However few testing methods support this
view since we would have to be able to make the following statement:

“the system S is composed of the parts P1 ,..., Pn ;
as a result of carrying out a testing process on S we can deduce that S is fault-free if each of
P1 ,..., Pn are fault free.

Here we define fault-free in the natural sense - that is the system completely satisfies the
behavioural requirements as detailed in the specification. A prerequisite is that the specifica-
tion should be available as some formal, mathematical description to ensure that we can actu-
ally establish what the requirements are in an unambiguous sense. The exercising of tests on
the system S involves the testing of the complete system, its internal and external interfaces as
well as the the components Pi.

A corollary is that the approach could be applied to each component Pi thus enabling the
reductionist method to be continued downwards for as far is appropriate and feasible. Ulti-
mately we might end up at a point where the components in question are tried and trusted, hav-
ing been extensively analysed and used over a number of years and thus to have survived
through a process of “natural selection”.

2.1. Fault detection.
For this approach to work we need to find some mechanism whereby we can establish that if

all the components are free from fault then so is the complete system. This is something that is
quite beyond most current testing methods. The claim “the system/component is fault-free” is
quite beyond current testing methods. In practise all we can usually say is that we have uncov-
ered a number of faults over a period of testing effort and the graph of the number of faults
against the period or amount of testing, measured suitably, indicates that the growth rate is
reducing.

The trouble is we do not know that no further faults are in the system at any particular time.
Also, in general we cannot assert that the only faults remaining are located in a specific module

no. of
faults

test time

Fig.1 The relationship between fault
detection and test time

test period

x

undetected
faults

x

Page 4

or component. A general formula for this curve is not known, if one existed it would probably
depend on the type of system, on the type of test methods and perhaps on the people doing and
managing the testing as well as wider issues relating to the management of the design project,
the attitudes of the clients, the implementation vehicle, the design methods and so on. High
quality empirical results obtained over a very long period would be needed to make proper use
of this approach even then it is less than ideal. The work of Littlewood and others [17], pro-
vides some statistical approaches to the question of software reliability but in some senses it is
used as substitute because of the failure of software testing to deliver methods able to provide
precise answers to the question “what faults are left?”.

2.2 Test effectiveness.
Other approaches to the problem of measuring the effectiveness of an individual testing

project usually depend on estimating the coverage of the tests, [1]. For example, if the tests are
structurally based, using program charts, say, then popular methods include establishing that
every path has been exercised or every decision node has been visited. This does not tell us
anything about fault detection, it merely measures effort rather than reward! The current
accepted definition of fault coverage is misleading since it is not the case that a precise meas-
ure can be placed on the number of faults that remain after the test process has been applied. In
most cases the definition of fault coverage is based on assumptions of the type described
above, that we are questioning. In much of the literature the estimates of the fault coverage are
obtained by running experiments with simple examples involving implementations that have
faults seeded in them and counting the numbers of known faults detected by the methods.
These empirical results are of curiosity value only. Miller & Paul, [19] provide a theoretical
method for establishing fault coverage of a test strategy, however, they assume that the imple-
mentation machine has the same number of states as the specification machine.

As mentioned before, these approaches tend to provide an assurance for the tester rather
than a meaningful indication of the success of the tests.

Before we look, briefly, at what progress there has been in addressing some of the theoreti-
cal issues of testing we will consider a popular method for the analysis and comparison of the
effectiveness of different testing methods.

2.3. Test method effectiveness.
A number of authors have sought to compare the effectiveness of, for example, random test-

ing methods with formally based functional testing, e.g.. [4]. Here the method was to take a
small system and to insert known faults into it, then to apply the two techniques to establish
which was most successful at detecting these faults. Further analysis could be done on the type
of faults each method was good or poor at detecting. Faults were classified for this purpose in a
number of categories. Results from this type of survey can be useful in establishing the relative
strengths and weakness of different, specific methods of test set generation. However, the situ-
ation is essentially artificial and it is not clear what can be said in general. The method is una-
ble to prove, for example, that either approach is better at detecting naturally occurring or
unseeded faults (the seeded ones may not be typical of real faults), or to identify conditions
under which a method detects all faults.

A number of attempts at developing a theory of testing or to analyse the testing situation
have been made. We will briefly consider two of them.

2.4. Probable correctness.
Hamlet [5] introduced the idea of “probable correctness”. Essentially, he considered the

Page 5

question of what we can say once a system has “passed” all the tests applied to it. He argued
from a simple probabilistic point of view about the way in which a value could be placed on
the likelihood of faults remaining in the system. This is an attractive idea that deserves more
research. Hamlet’s discussion was based on a number of very restrictive assumptions about the
distribution of faults in the system and there is no discussion of the type and seriousness of

faults. After all, if the likelihood of any faults remaining was quite small, say 1.0 x 10-5, then
we may or may not be satisfied but it would be so much more reassuring if we could say that

the likelihood of a serious fault was 1.0 x 10-10, however we define serious - perhaps we might
identify certain safety considerations that must be met and orient our tests towards uncovering
faults that cause these to be violated. We may not mind too much if a screen display omitted a
full-stop in some text - on the other hand if the display was giving instructions on medical dos-
age to paramedics a full-stop (decimal point) missing could be disastrous. So the importance of
a fault depends on the application and the working environment. Treating all faults as of equal
import is an unsatisfactory basis for this type of argument.

2.5. A simple theory of testing.
Goodenough and Gerhard [6] introduce an outline theory for testing. They treat a software

system as a (partial) function from an input set to an output set and the testing process consists
of constructing “revealing domains” that expose faults in this function - in other words they are
looking for values for which the specified function and the implemented function differ. This is
a very general and abstract approach which provides a useful set of simple concepts and termi-
nology for the discussion of some aspects of testing without giving too many clues as how to
construct effective testing strategies.

We claim, therefore, that few of the existing testing methods measure up to our demands
and the main theoretical attempts are inadequate for the purpose that we explained above - the
philosophy of reductionist testing.

3. Testing based on an algebraic approach to computational modelling.

The process of software design, including within that activity all phases of requirements
capture, specification, design, prototyping, analysis, implementation, validation, verification
and maintenance is one that is oriented, or should be, around the construction of computational
solutions to specific problems.

When we are constructing a software system (this also applies to hardware) we are attempt-
ing to construct something that will, when operating, carry out some computable function.
Consequently it is worth considering what this means. Essentially, computable functions have
been identified as the functions computed by Turing machines. The method will not be applica-
ble to implementations that behave like a Turing machine that does not halt. In other words we
will not try to deal with those systems that regress into an infinite loop from which no output
emanates, for our purposes these systems will be deemed to be unacceptable anyway. A way to
establish that a system is not of this form is to identify a period of time which is the maximum
that the system can run for without producing any detectable output. We will also assume that
the specification of the system is also of this form, namely a Turing machine that halts under its
intended operating conditions. Real-time systems are covered by this definition since we
require that the specified system does have detectable behaviour under all conditions. This is a
kind of design for test condition that we will see more of later.

Page 6

We then have two algebraic objects, the Turing machine representing the specification of the
desired system and the Turing machine representing the complete implementation. A testing
method would then try to ascertain if these two machines computed the same function. This is
a basic strategy that we will develop, however, not in the context of a Turing machine which is
too low level and unwieldy, but in the context of a more useful, elegant and equivalent model.

In so doing we will quote some important theoretical results that justify what we are doing.
It is important to stress that the method of finite state machine testing proposed by Chow [7],
and developed by a number of other authors since, e.g.. [8], is based on a similar sort of philos-
ophy, the difference being that they have to make very strong assumptions about the nature of
the implementation machine. However, their work did act as an important inspiration for our
own. (The IEEE specify finite state machine testing as an important aspect of protocol testing,
[18].)

3.1. X-machines.
The model we have chosen, both as a basis for theoretical work in the theory of computabil-

ity and the theory of testing and as a basis for a formal specification language, is the X-
machine. Introduced by Eilenberg in 1974, [9], they have received little further study. Hol-
combe, [10], proposed the model as a possible specification language and since then a number
of further investigations have demonstrated that this idea is of great potential value to software
engineers. In its essence an X-machine is like a finite state machine but with one important dif-
ference. A basic data set, X, is identified together with a set of basic processing functions, Φ,
which operate on X. Each arrow in the finite state machine diagram is then labelled by a func-
tion from Φ, the sequences of state transitions in the machine determine the processing of the
data set and thus the function computed. The data set X can contain information about the
internal memory of a system as well as different sorts of output behaviour so it is possible to
model very general systems in a transparent way. It is best to separate the control state of the
system from the data state since this allows much more scope for organising the model to
ensure a small and manageable state space. This is done easily with this method, the set X is
often an array consisting of fields that define internal structures such as registers, stacks, data-
base filestores, input information from various devices, models of screen displays and other
output mechanisms. The functions will read inputs, datafiles, internal memory, write to all of
these, refresh displays etc..

Consider a simple, abstract example:

We haven’t specified X or the functions fi but this is sufficient to provide a basic idea of the
machine. It starts in a given, initial state (control state) and a given state of the system's under-
lying data type X, (the data state), there are a number of paths that can be traced out from that
initial state, these paths are labelled by functions f1, f2 etc. Sequences of functions from this

f1

f3

1

2

3

4

5

6

f5
f4

f2f1
f1

f1

States are 1,..,6 fi : X→ X
for i = 1,..5

initial
final
state

state

Page 7

space are thus derived from paths in the state space and these may be composed to produce a
function that may be defined on the data state. This is then applied to the value x, providing that
the composed function is defined on x. This then gives a new value, x' ∈ X for the data state and
a new control state. It is best if the machine is deterministic so that at any moment there is only
one possible function defined (that is the domains of the functions emerging from a given state
are mutually disjoint).
From the diagram we note that there is a possible sequence of functions from state 1 to state 6,
here a specified terminal state, labelled by the functions f1 ,f1, f2, f1. Assuming that each value
is defined this path then transforms an initial value x ∈ X into the value f1(f2 (f1(f1(x)))) ∈ X.
So we are assuming that x ∈ domain f1;

f1(x) ∈ domain f1 ;
f1(f1(x)) ∈ domain f2;

and f2 (f1(f1(x))) ∈ domain f1 .
The computation carried out by this path is thus a transformation of the data space as well as a
transformation of the control space.

This is a very general model of computing and a Turing machine can easily be represented
in this way, see [9]. In fact it is slightly too general and we now consider a natural subclass of
these machines.

3.2. Stream X-machines and the fundamental theorem of testing.
Those X-machines in which the input and the output sets behave as orderly streams of sym-

bols are called stream X-machines and are defined formally in the appendix. The basic idea is
that the machine has some internal memory, M, and the stream of inputs determine, depending
on the current state of control and the current state of the memory, the next control state, the
next memory state and any output value.

So if Σ is the set of possible inputs and Γ represents the set of possible outputs we put

X = Γ* x M x Σ*

Each processing function φ : Γ* x M x Σ* → Γ* x M x Σ* is of the form whereby, given a
value of the memory and an input value, φ can change the memory value and produce an output
value, the input value is then discarded. There is an initial state and all states are terminals..

The results that we will discuss are based on this class of machines. They represent a very
wide class of systems that can describe all feasible computing systems. We proceed now with
some general strategic remarks.

The theory of finite state machines includes a result that describes how to test whether two
finite state machines are isomorphic. Isomorphism means that they are algebraically similar
and if we wish we can convert from one to another by using a “renaming” which respects the
algebraic structure of the machines. Under these conditions their behaviour is the same. We
can convert an X-machine into a finite state machine by treating the elements of Φ as abstract
input symbols. We note that in the automaton all states are terminals. We are, in effect, “forget-
ting” the memory structure and the semantics of the elements of Φ. If we call this the associ-
ated automata of the X-machine we have the following result:

Let M and M ' be two deterministic stream X-machines, f and f' the functions computed by
them and A and A' their associated automata. If A and A ' accept the same language then f = f'.

Proof. See [13].

Page 8

Now proving that the two functions computed by the two stream X-machines, one the spec-
ification and the other the implementation, are equal is precisely what we want. If we can do
this with a finite test set we will have a very powerful method indeed. This is our aim. To
achieve this we need to consider how to prove that the associated automata of two stream X-
machines accept the same language.

Drawing on the techniques used in state machine testing will enable us to progress with this
aim. We need some further terminology for stream X-machines.

A type Φ is called output-distinguishable if:
∀ φ1, φ2 ∈ Φ, if ∃ m ∈ M, σ ∈ Σ such that φ1(m, σ) = (γ, m1') and φ1(m, σ) = (γ, m2') with m1',
m2' ∈ M, γ ∈ Γ, then φ1 = φ2.

What this is saying is that we must be able to distinguish between any two different processing
functions by examining outputs. If we cannot then we will not be able to tell them apart. So we
need to be able to distinguish between any two of the processing functions (the φ’s) for all
memory values.

A type Φ, is called complete if ∀ φ ∈ Φ and ∀ m ∈ M, ∃ σ ∈ Σ such that (m, σ) ∈ dom φ.
This condition prohibits “dead-ends” in the machine.

These two conditions are required of our specification machine, we shall refer to them as
design for test conditions. They are quite easily introduced into a specification by simply
extending the definitions of suitable Φ functions and introducing extra output symbols. These
will only be used in testing.

Now we consider how test sets can be constructed that will show that the two associated
automata are isomorphic.

Let V ⊆ Φ* be a set of input sequences and let q and q' two states in A and A' respectively.
Then, q and q' are said to be V - equivalent if ∀ v ∈ V then A q accepts v iff A 'q accepts v,
where A q = (Φ, Q, F, q) and A'q = (Φ', Q', F', q') are the finite state machines obtained from A
and A' respectively by considering q and q' as initial states. Thus q and q' are said to be V-

equivalent if we can always find defined paths labelled by elements from V from both q and q'.

Two states q and q' are said to be V- distinguishable if they are not V- equivalent. Thus some
v exists in V such that either:

a path labelled v exists from q and no path labelled v exists from q';
or a path labelled v exists from q' and no path labelled v exists from q.

The following definitions are derived from the work of Chow [7].

Let A = (Φ, Q, F, qo) be a minimal finite state machine. Then a set of input sequences
W ⊆ Φ* is called a characterisation set of A if W can distinguish between any two pairs of
states of A. .

Let A = (Φ, Q, F, qo) be a finite state machine. Then a set of input sequences T ⊆ Φ* is
called a transition cover if, for any state q ∈ Q, there is an input sequence t ∈ Φ* which forces
the machine A into q from the initial state qo such that t ∈ T and tφ ∈ T, ∀ φ ∈ Φ.

We can thus construct a set of sequences of elements from Φ* that will be the basis for our

Page 9

testing process, a set that will establish whether the two stream X-machines compute the same
function. However, this is not really very convenient, we really want a set of input sequences
from Σ*. We thus need to convert sequences from Φ* into sequences from Σ*. We do this by
using a fundamental test function, t : Φ* → Σ*, defined recursively with reference to the spec-
ification machine. This is defined in the appendix. Note that the test function is not uniquely
determined, many different possible test functions exist and it is up to the designer to construct
it. There is an issue of choosing one which is of maximal efficiency which we have yet to
investigate.

We can now assemble our fundamental result which is the basis for the testing method.

The fundamental theorem of testing:
Let M and M' be two deterministic stream X-machines with Φ output-distinguishable and

complete which compute f and f' respectively and t : Φ* → Σ* be a fundamental test function
of M.

Let T and W be a transition cover and a characterisation set, respectively, of the associated
automaton A of M and put Z = ΦkW ∪ Φk-1W ∪ ... ∪ W.

If A and A' are minimal, card(Q') - card(Q) ≤ k and f(s) = f'(s) ∀ s ∈ t(TZ), then the associ-
ated automata A and A' are isomorphic. If the automata are not both minimal we can still
establish that the functions the two machines compute are equal.

Once all of this mechanism is in place we can apply the fundamental theorem to generate a
test set mechanically. Thus we construct explicitly Z = ΦkW ∪ Φk-1W ∪ ... ∪ W and form the
set of input strings t(TZ). This is the test set we are seeking. The value of k is chosen to repre-
sent the difference between the known state size of the specification and the (unknown) state
size of the implementation. In practice this is not usually large, for especially sensitive applica-
tions one can make very pessimistic assumptions about k at the cost of a large test set.

We must make the following further assumptions:
1. The specification is a deterministic stream X-machine;
2. The set of basic functions Φ is output-distinguishable and complete;
3. The associated automata of the specification machine is minimal;
4. The implementation is a deterministic stream X-machine with the same set of basic

functions Φ.

Of these assumptions the first three lie within the capability of the designer. An algorithm
for ensuring that a stream X-machine satisfies condition 2 is given in Ipate & Holcombe [13].
Any stream X-machine can be replaced by a machine satisfying condition 2. We refer to these
conditions as “design for test” conditions, without them it is going to be difficult to test a sys-
tem properly, there may be hidden behavioural faults in the implementation which cannot be
exposed. The procedures are quite straightforward and intuitive. Condition 3 requires some
comment. It is clear that the designer can arrange for the associated automata of the specifica-
tion X-machine to be minimal, standard techniques from finite state machine theory are avail-
able. The problem remains with the requirement that the implementation’s associated automata
is minimal. Since we do not have an explicit description of the implementation as an X-
machine we cannot analyse its associated automata to see if it is minimal. We do know, how-
ever, that there is a minimal automata with the same behaviour as the automata of the imple-
mentation. It is this that will feature in the application of the fundamental theorem. Thus we
have a test set that determines whether the behaviour, that is the function computed, by the
specification equals the function computed by the implementation - providing that both imple-
mentation X-machine and the specification X-machine have the same basic function set Φ. The

Page 10

final condition is the most problematical. Establishing that the set of basic functions, Φ, for the
implementation is the same as the specification machine’s has to be resolved, however. In prac-
tice this will be done with a separate testing process, either an application of the method
explained above since the basic processing functions are computable and thus expressible as
the computations of other, presumably much simpler, X-machines or by using some other test-
ing method for testing simple functions - perhaps the category-partition method [14] or a vari-
ant. If the basic processing functions are tried and tested with a long history of successful use
- perhaps they are standard procedures, modules or objects from a library - then their individ-
ual testing could perhaps be assumed done. If we assume that the Φs are implemented cor-
rectly this carries with it the consequence that the implementation is a stream X-machine since
these functions are the processing functions of a stream X-machine by construction. What sort
of restriction is this? It is quite legitimate to assume that the implementation is a deterministic
stream X-machine because of the computational generality of this class of machines. This does
not mean that all Turing machines can be represented as a stream X-machine, but that there
exists a hierarchy of stream X-machines with progressively more complex basic functions
which will approach the generality of the Turing model. In likely applications of the method
we will successively apply the test method to the hierarchy of stream X-machines that are cre-
ated when we consider the basic functions Φ at each level. Thus, testing a specific function φ,
will involve considering it as the computation defined by a simpler stream X-machine and so
on.

Ultimately, at the bottom level we need to test the basic functions in some suitable way - or
assume that they are implemented correctly.

In many of the case studies that we have looked at the basic functions that need to be used

Φ1.1 Φ1.2 Φ1.3 Φ1.4 Φ1.5 Φ1.6

Φ1.1.3Φ1.1.2Φ1.1.1 Φ1.2.3Φ1.2.2

Φ1.1.4.2

Φ1.1.5Φ1.1.4

Top level stream X-machine

Top level basic
functions

Second level Stream X-machine Second level Stream X-machine

Second level
basic functions

Φ1.1.4.3 Φ1.1.5.1 Φ1.1.5.2 Φ1.2.1.1Φ1.1.4.1

Bottom level stream X-machine

Φ1.2.1

Φ1.2.1.2

Diagram illustrating how the basic functions can themselves be specified using simpler stream
X-machines in a natural heirarchical manner.

Page 11

are typically very straightforward ones that carry out simple tasks on simple data structures,
inserting and removing items from registers, stacks etc., carrying out simple arithmetic opera-
tions on simple types and processing character strings in well understood ways. There is prob-
ably little point in devoting a great deal of testing effort to this aspect of the problem, it may
seem to be slightly dangerous to say so but we know how to implement such simple operations
correctly.

The benefits that accrue if the method is applied are that the entire control structure of the
system is tested and all faults detected modulo the correct implementation of the basic func-
tions.

4. Discussion.

Let us examine these results in the context of the issues raised in the earlier part of the
paper. In particular, does this new method really deliver a principled method of testing? We
now can say something about any faults remaining after the successful application of the full
test set generated by the method (assuming that the specification X-machine satisfies all of the
requirements). Any such faults are restricted to the basic processing functions. This approach
does satisfy the reductive requirement that we expressed at the start. We no longer need to con-
sider test coverage issues since we have full coverage with respect to faults - outside of the set
of basic functions Φ.

Recall that the reductionist philosophy means that we can replace the problem of testing for
all faults in a stream X-machine to one of detecting faults in something simpler - namely the
processing functions Φ. These, themselves, can be represented as the computations of even
simpler stream X-machines if desired and the reduction continued further. Alternatively these
may be functions obtained from a library of dependable objects that the designers are confident
are essentially fault-free.

The main point from all of this is that if this testing method is used and the implementation
passes all of the tests in the test set then it is known to be free of faults, providing the Φ’s have
been implemented in a fault-free fashion.

The final question that needs to be addressed is concerned with the practicality of the
method. For example, how complex is the test generation algorithm? A detailed complexity
analysis of the algorithm has yet to be carried out and so we cannot provide a theoretical
answer to this question yet. However, we can make out the following observations.

Let A , the associated automaton of the stream X-machine specification, be a minimal finite
state machine with n states and card(Φ) = r and let n' be the maximum number of states in the
implementation. Then, the method involves generating the values of n test functions to, ..., tn-1

for domains included in Z ∪ ΦZ. In the worst case, W contains at most n2 sequences of length
n-1 each. Hence, the maximum number of sequences in Z ∪ ΦZ is of the order of

n2 (r+1) rn'-n, each one is of length no more than n'. Therefore, the maximum size of the set test
will be of the order of n3 (r+1) rn'-n, and the maximum length of a test sequence will be n' n.
The actual size could be significantly lower, since the domains of the test functions we gener-
ate are subsets of Z ∪ ΦZ and also since these test functions might not be injective. If the
number of the inputs is large (i.e. card(Σ) >> card(Φ)) the size of the test set is considerable
lower compared to Chow's method.

Page 12

Thus test sets generated by the method appear to be manageable as is the test application
process. Clearly it has to be supported by automated systems and suitable tools which do not
yet exist.

The X-machine specification method also needs further research and evaluation although all
those that we know of who have used it have found it to be very intuitive and simple to use. It
is also powerful and has been used to construct a detailed specification of a time dependent
system [15]. There will clearly be a need to develop the method to deal with large scale sys-
tems and a refinement process which allows the development of components and their linking
together will be needed. Some of the theoretical work for this has been done [16].

In [11] we propose the use of X-machines as the foundation of a completely integrated
design, verification and test methodology. Because the approach lends itself to a rigorous
refinement based development process it is possible to construct test sets for intermediate ver-
sions of the implementation, providing that they satisfy all the design for test conditions. At
subsequent stages, after the model has been refined, perhaps by expanding some of the pro-
cessing functions and reducing the abstraction in a coherent way, the refined machine may be
tested in way that utilises test information from the earlier version together with tests generated
from the components used to carry out the refinement succinctly.

Conclusions.
We have described a new approach to the testing of software systems which is reductionist

in the sense that the approach provides a method for generating a finite test set which will
detect all faults in the system providing that the basic processing functions are implemented
correctly. The complexity of the test sets is better than that of a number of existing methods.
The precondition for the application of the method is a formal specification of the system as a
stream X-machine, a method that we and colleagues have introduced recently and evaluated
with case studies drawn from a wide variety of different applications.

The scope of the method is quite general and is relevant for real-time applications as well
as traditional information system applications. It is independent of the nature of an implemen-
tation also. The recent interest in object-oriented systems and the urgent need to develop effec-
tive testing methods for them, provides a new and exciting opportunity. The claim is made in
[3], that “a state model can provide a conceptual basis for object-oriented testing”. The fact
that objects are computational phenomena means that we can identify them with suitable
classes of X-machines. Representing the control structure more explicitly by way of the rich
semantics of the X-machine model will provide a firm basis for the development of a princi-
pled testing method for object-oriented software.

References.
[1]. G. Myers, “The art of software testing.”, Wiley, 1979.
[2]. E. Dijkstra, “A discipline of programming.” Prentice-Hall, 1976.
[3]. R.V. Binder, “Testing object-oriented systems: a status report.” Proc. STAR94. 385-392,
1994.
[4]. H. Waeselynck & P. Thévenod-Fosse, “An experimentation with statistical testing.” Proc.
EuroSTAR94, Brussels, 10/1-10/14, 1994.1994.
[5]. R.G. Hamlet, “Probable correctness theory.”, Inf. Proc. Letters. 25, 17-25, 1987.
[6]. J.B. Goodenough and S.L. Gerhard. “Toward a theory of test data selection.” IEEE Trans-
actions on Software Engineering, 1(2), 156-173, 1975.
[7]. T.S. Chow, “Testing software design modeled by finite state machines.” IEEE Transactions

Page 13

on Software Engineering, 4(3), 178-187, 1978.
[8]. S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou and A. Ghedamsi, “Test selection
based on finite state models.” IEEE Transactions on Software Engineering, 17(6), 591-603,
1991.
[9]. S. Eilenberg, “Automata, languages and machines, Vol. A.”, Academic Press, 1974.
[10]. M. Holcombe, “X-machines as a basis for dynamic system specification.” Software Engi-
neering Journal, 3(2), 69-76, 1989.
[11]. M. Holcombe, “An Integrated Methodology for the Specification, Verification and Test-
ing of Systems. Software Testing, Verification and Reliability, 3, 149-163, 1993.
[12]. F. Ipate & M. Holcombe, “ X-machines with stacks.” Departmental Report, Department
of Computer Science, University of Sheffield. 1994.
[13]. F. Ipate & M. Holcombe, “ X-machine based testing.” Departmental Report, Department
of Computer Science, University of Sheffield. 1994.
[14]. W. Hetzel, “The complete guide to software testing.”Wiley, 1984.
[15]. M. Fairtlough, F. Ipate, M. Holcombe, C. Jordan, Z. Duan. “Using an X-machne to spec-
ify a video cassette recorder.” Departmental Report, Department of Computer Science, Univer-
sity of Sheffield. 1994.
[16]. F. Ipate. “X-machines - theory and applications in specification and testing.” PhD thesis,
University of Sheffield. 1995.
[17].B. Littlewood, “Stochastic reliability growth: a model for fault removal in computer pro-
grams and hardware designs.” IEEE Trans. Reliability, R-30, 313-320, 1981.
[18] A.T. Dahbura, K.K. Sabnani & M.U. Uyar, “Formal methods for generating protocol con-
formance test sequences.” Proc. IEEE, 78, 1317-1325, 1990.
[19] R.E.Miller & S.Paul, IEEE/ACM Trans. Networking, 2, 457-470.

Appendix.

A. 1. Stream X-machines.
Let Σ and Γ two finite alphabets (called the input and output alphabet respectively). Then, an
X-machine M = (Σ, Γ, Q, M, Φ, F, I, T, mo) is called a stream X-machine if

1. X = Γ* × M × Σ*, where M is a (possibly infinite) set called the (internal) memory.
2. The type is
Φ = {φ: X ↔ X}, where each relation φ is defined by:

 (g ρ(m, head(s)), µ(m, head(s)), tail(s)), if
φ(g, m, s) =

 ∅, otherwise
where µ: M × Σ ↔ M, ρ: M × Σ ↔ Γ are relations.

3. Q is the finite set of (control) states, I is the set of initial states, T is the set of terminal
states. In this paper we will always take T = Q.

4. F: Q x Φ→ P (Q), where P (Q) denotes the set of subsets of Q, (the power set), defines
the next state function.

Note: λ ∈ Σ* is the empty string. For two strings s, t ∈ Σ*, s::t represents the string obtained by
concatenation. Also head: Σ* → Σ* and tail: Σ* → Σ* are partial functions defined by:

head(σ::s) = σ, ∀ σ ∈ Σ, s ∈ Σ*; head(λ) is undefined;
tail(σ::s) = s, ∀ σ ∈ Σ, s ∈ Σ*; tail(λ) is undefined.

Each transition function removes the head of the input stream and adds an element to the rear
of the output stream, and, furthermore, no transition is allowed to use information from the tail
of the input or any of the output. m0 is the initial state of the memory.

It is clear that each relation φ is well determined by ρ and µ. For the sake of simplicity, in what

s λ≠

Page 14

follows we shall be referring to φ as a pair φ = (ρ, µ). Then, the type, Φ, will be written as

Φ = {φ | φ:M ×Σ ↔ Γ× M, φ = (ρ, µ)}.

For a a stream X-machine to be deterministic, then I must be a single state and T = Q, Φ must
be a set of partial functions and ∀ φ, φ' ∈ Φ, if ∃ q ∈ Q, m ∈ M, σ ∈ Σ such that (q, φ) ∈ dom
F, (m, σ) ∈ dom φ and (m, σ) ∈ dom φ', then φ = φ'. (Here dom f refers to the domain of a par-
tial function f.). So each computation from the initial state to any other state is completely
determined by the input sequence and the initial memory value.
A deterministic stream X-machine will compute a partial function f: Σ* → Γ*.

A. 2. The test functions.
Let M = (Σ, Γ, Q, M, Φ, F, qo, mo) be a deterministic stream X-machine with Φ complete and
let q ∈ Q, m ∈ M. We define recursively a function tq ,m : Φ* → Σ* as follows:

1. tq ,m (λ) = λ, where λ ∈ Φ* and λ ∈ Σ* are the empty strings.
2. The recursion step depends on the following two cases:
a. if ∃ a path

in M starting from q, then tq ,m (φ1... φn+1) = tq ,m (φ1... φn) σn+1, where σn+1 is chosen such
that (w(q, m, tq ,m (φ1... φn)), σn+1) ∈ dom φn+1 and where w(q, m, tq ,m (φ1... φn)) is the
value of the next memory state given the current control state, q, the initial memory value
m, and the input string tq ,m (φ1... φn). [Note: Since we only apply this construction in the
case where Φ is complete, there exists such a σn+1.]

b. otherwise, tq ,m (φ1... φn+1) = tq,m (φ1... φn).

Then tq ,m is called a test function of M w.r.t. q and m.
If q = qo and m = mo, tq ,m is denoted by t and is called a fundamental test function of M.

If

is a path in M , then s = tq ,m (φ1... φn) will be an input string which, when applied in q and m,
will cause the computation of the machine to follow this path. If there is no arc labelled φn+1
from qn+1, then tq ,m (φ1... φn φn+1) = s::σ, where σ is an input which would have caused the
machine to exercise such an arc if it had existed (i.e. therefore making sure that it does not
exists).
Also, for all φn+2,..., φn+k∈Φ, tq ,m (φ1... φn φn+1...φn+k) = tq ,m (φ1... φn φn+1) (i.e. therefore
only the first non-existing arc in the path is exercised by the value of the test function).
We can say that a test function tests whether a certain path exists or not in M (hence the name).

A. 3. The fundamental theorem of X-machine testing:
Let M = (Σ, Γ, Q, M, Φ, F, qo, mo) and M' = (Σ, Γ, Q', M, Φ, F', qo', mo) be two deterministic
stream X-machines with Φ output-distinguishable and complete which compute f and f' respec-
tively and t: Φ* → Σ* be a fundamental test function of M. .

q q2 q3....qn qn+1
φ1 φ2 φn

q q2 q3....qn qn+1
φ1 φ2 φn

Page 15

Let T and W be a transition cover and a characterisation set, respectively, of the associated
automaton A of M and put Z = ΦkW ∪ Φk-1W ∪ ... ∪ W.
If A and A' are minimal, card(Q') - card(Q) ≤ k and f(s) = f'(s) ∀ s ∈ t(TZ), then the associated
automata A and A' are isomorphic.
Proof. [13].

A. 4. Example.
A simple example of a deterministic stream X-machine satisfying the design for test conditions
is:
1. Σ = {x, y} is the input set,
2. Γ = {a, b} is the output set,
3. Q = {qo, q1, q2} is the set of states; qo is the initial state and all the states are terminal (i.e.
T = Q).
4. M = {0, 1}. The initial memory value is mo = 0.
5. Φ = {φ1, φ2, φ3, φ4}, where

φ1: M × {y} → Γ × M is defined by:
φ1 (m, y) = (a, 1), m ∈ M

φ2: M × {x} → Γ × M is defined by:
φ2 (m, x) = (a, 0), m ∈ M

φ3: M × {y} → Γ × M is defined by:
φ3 (m, y) = (b, 1), m ∈ M

φ4: M × {x} → Γ × M is defined by:
φ4 (m, x) = (b, 0), m ∈ M

6. F is represented in the diagram below:

For example, the function, f computed by this machine will, for example, transform the input
sequence yxyy into f(yxyy) = aabb and for xy, f(xy) will be undefined etc.
The sequence of state transitions when the input sequence yxyy is applied is:

(q0 ,0) φ1 → (q1, 1) φ2 → (q1, 0) φ3 → (q2, 1) φ3 → (q2, 1)
where

(q0 ,0) φ1 → (q1, 1) means that in state q0 with memory contents 0 the function φ1 can be
applied giving a next state q1 and new memory value 1.
We see that, for example, φ1 distinguishes between q0 and q1.
A characterisation set for this machine is W = {φ1, φ2}.
A transition cover is :

T = { Λ, φ1, φ2, φ3, φ4, φ1φ1, φ1φ2, φ1φ3, φ1φ4, φ1φ3φ3, φ1φ3φ4, φ1φ3φ1, φ1φ3φ2 }

but this can be broken down into more manageable pieces so that for this stream X-machine a
transition cover T = To can be written as follows:

q0 q1 q2φ1

φ2

φ3

φ3

φ4

Page 16

To = {1} ∪ {φ1} ∪ {φ2, φ3, φ4} ∪ {φ1}T1, where
T1 = {1} ∪ {φ2, φ3} ∪ {φ1, φ4} ∪ {φ3}T2 and
T2 = {1} ∪ {φ3, φ4} ∪ {φ1, φ2}

If mo = 0 is the initial memory value and m1 = m2 = 1, then:
to is a test function w.r.t. qo and mo with to(φ1) = y;
t1 is a test function w.r.t. q1 and m1 with t1(φ3) = y;
t2 is a test function w.r.t. q2 and m2.
Then, a test set Yo = to (Xo), Xo = To Z, can be written as:
to(Xo) = to(Z) ∪ to({φ1}Z) ∪ to({φ2, φ3, φ4})∪ {to(φ1)} t1(X1), where
t1(X1) = t1(Z) ∪ t1({φ2, φ3}Z) ∪ t1({φ1, φ4}) ∪ {t1(φ3)} t2(X2) and
t2(X2) = t2(Z) ∪ t2({φ3, φ4}Z) ∪ t2({φ1, φ2}).

For W = {φ1, φ2} and m = n, we have Z = {φ1, φ2}. Hence, by choosing appropriate values for
the test functions, the test set Yo is:
Yo = {y, x} ∪ {yy, yx} ∪ {x, y, x} ∪ {y}Y1, where
Y1 = {y, x} ∪ {xy, xx, yy, yx} ∪ {y, x} ∪ {y}Y2 and
Y2 = {y, x} ∪ {yy, yx, xy, xx} ∪ {y, x}
The full set of test inputs is thus:

Y0 = {y, x, yy, yx, xy, xx, yyy, yyx, yxy, yxx, yyyy, yyyx, yyxy, yyxx }.

Alternatively we can construct a fundamental test function, t, directly, which satisfies the fol-
lowing values t(φ1) = y, t(φ1φ2) = yx, t(φ1φ2φ4) = yxx, t(φ1φ2φ4φ1) = yxx etc. and proceed from
there.

