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Abstract

The functional equation for the Hurwitz Zeta function �(s; a) is

used to obtain formulas for derivatives of �(s; a) at negative odd s

and rational a. For several of these rational arguments, closed form

expressions are given in terms of simpler transcendental functions,

like the logarithm, the polygamma function, and the Riemann Zeta

function.

1 Introduction

The Hurwitz Zeta function �(s; a), de�ned as the analytic continuation of
the series

�(s; a) =
1X
n=0

1

(n+ a)s
(<(s) > 1; <(a) > 0); (1)

is one of several higher transcendental functions that appear in a wide variety

of mathematical contexts; see the relevant literature, [1], [2], [3]. Among the

most common of these situations is the evaluation of certain class of de�nite

integrals and in�nite sums. Recently, V. Adamchik [4] obtained closed form
expressions for a class of de�nite integrals involving cyclotomic polynomials

and nested logarithms in terms of derivatives of �(s; a). For example,
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where � 0(s; a) denotes the derivative with respect to the �rst parameter
@

@s
�(s; a). By computing � 0(s; a) at s = �1, and a = 1

4
and 3

4
,the above

integral can be reduced to just G

2�
, where G is Catalan's constant. He also

gave expressions for � 0(�1; p) at p = 1

2
, 1

3
, 1

6
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3
and 5

6
in terms of other known

transcendental functions. These results later were applied to in�nite sums

involving the Riemann Zeta function (see [5] and [6]), for example

4
1X
k=0
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where  (p)(z) is a polygamma function de�ned by

 (p)(z) =
dp+1

dzp+1
log �(z) (p = 0; 1; 2; : : :);

The purpose of this paper is to obtain general representations for � 0(n; p) at
any negative odd integer n and p = 1
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. The proof of

the general formula will be explicitly shown for p = 1

3
, for others p formulas

follow by analogy.

2 Derivatives of the Hurwitz Zeta Function

In this section we develop the closed form expressions for derivatives of �(s; a).
First we will need a lemma connecting derivatives of the Riemann Zeta func-

tion:

Lemma 1 For any positive integer k,

� 0(2k) =
(�1)k+1 (2�)2k

2(2k)!

�
2 k � 0(�2k + 1)� ( (2k)� log(2�))B2k

�
(2)

This relationship is implied by the functional equation for the Riemann
Zeta function:

�(1� s) = 2 (2�)�s �(s) cos
��s
2

�
�(s): (3)
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Di�erentiating both sides of this equation with respect to s, putting s = 2k,

and using Euler's expansion for �(2k),

�(2k) =
(�1)k+1(2�)2kB2k

2(2k)!
(k = 1; 2; 3; : : :) (4)

we arrive at the desired result.

Proposition 1 Let k, p, and q be positive integers such that p < q. Then,

� 0
�
� 2k + 1;

p

q

�
=
( (2k)� log(2�q))B2k(p=q)

2k
� ( (2k)� log(2�))B2k

q2k 2k
+

(�1)k+1 �
(2�q)2k

q�1X
n=1

sin
�2�pn

q

�
 (2k�1)

�n
q

�
+

(�1)k+1 2 (2k � 1)!

(2�q)2k

q�1X
n=1

cos
�2�pn

q

�
� 0
�
2k;

n

q

�
+

� 0(�2k + 1)

q2k

(5)

Rademacher's formula states that for all s,

�
�
s;
p

q

�
= 2�(1 � s) (2�q)s�1

qX
n=1

sin
��s
2

+
2�np

q

�
�
�
1 � s; n

q

�
: (6)

This is also known as the functional equation for the Hurwitz Zeta function

(see Apostol (1976)). By di�erentiating both sides of the equation with
respect to s, letting s = �2k + 1, and then applying identities (see [1], [7])

 (p)(z) = (�1)p+1 p! �(p + 1; z) (p = 1; 2; 3; : : :); (7)

and

�(�n; a) = �Bn+1(a)

n+ 1
(n = 0; 1; 2; : : :): (8)
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to the appropriate terms, we get

� 0
�
� 2k + 1;

p

q

�
=
( (2k)� log(2�q))B2k(p=q)

2k
+

(�1)k+1 �
(2�q)2k

qX
n=1

sin
�2�pn

q

�
 (2k�1)

�n
q

�
+

(�1)k+1 2 (2k � 1)!

(2�q)2k

qX
n=1

cos
�2�pn

q

�
� 0
�
2k;

n

q

�
(9)

In the �rst sum, the n = q term vanishes, and in the second sum, the same
term is simply � 0(2k). We can pull this term out, but we want to stay within
the same class of functions, so Lemma 1 is employed to write � 0(2k) in terms
of � 0(�2k + 1), thus completing the proof.

In general, it is not easy to simplify equation (5) for arbitrary p and q.
However, for some simple cases, the summed trigonometric terms come out
complementary, and relationships can be found among the special functions
that yield a nice closed form. As an illustration, consider the p = 1, q = 3
case:

Proposition 2 For any positive integer k,

� 0
�
� 2k + 1;

1

3

�
=� (9k � 1)B2k�p

3(32k�1 � 1)8k
� B2k log(3)

(32k�1)4k
�

(�1)k  (2k�1)(1
3
)

2
p
3(6�)2k�1

� (32k�1 � 1) � 0(�2k + 1)

2(32k�1)

(10)
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By taking equation (5) with p = 1 and q = 3, we immediately obtain

� 0
�
� 2k + 1;

1

3

�
=
( (2k)� log(6�))B2k(

1
3
)

2k
� ( (2k)� log(2�))B2k

9k 2k
+
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4
p
3(6�)2k�1

�
 (2k�1)

�1
3

�
�  (2k�1)

�2
3

��
�

(�1)k+1(2k � 1)!

(6�)2k

�
� 0
�
2k;

1

3

�
+ � 0

�
2k;

2

3

��
+

� 0(�2k + 1)

9k
(11)

Now we will apply three easily derivable identities to simplify this result.

Consider the multiplication formula for the Hurwitz Zeta function:

�(s; kz) = k�s
k�1X
n=0

�
�
s; z +

n

k

�
(k = 1; 2; 3; : : :): (12)

Putting z = 1=k and using equation (7) yields

 (n)
�2
3

�
= (�1)n+1 n! (3n+1�1) �(n+1)� (n)

�1
3

�
(n = 1; 2; 3; : : :): (13)

By di�erentiating the multiplication formula, we obtain a similar identity,

k�1X
n=1

� 0
�
s;
n

k

�
= (ks � 1) � 0(s) + ks log(k) �(s) (k = 1; 2; 3; : : :); (14)

which implies

� 0
�
2k;

1

3

�
+ � 0

�
2k;

2

3

�
= (9k � 1) � 0(2k) + 9k log(3) �(2k): (15)

Finally, through some simple identities of the Bernoulli polynomials, one can
see that

B2k

�1
3

�
=

(31�2k � 1)B2k

2
(k = 1; 2; 3; : : :): (16)

Substituting (13), (15), and (16) into (11) leaves an equation that is solely in
terms of the transcendentals �, log(3),  (2k�1)(1

3
), and � 0(�2k+1). Grouping

according to these terms yields the desired result.
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By following the method just demonstrated, additional cases for � 0(�2k+
1; p) with p = 1

2
, 2

3
, 1

4
, 3

4
, 1

6
and 5

6
can be derived. Though some di�erent

simpli�cations regarding Bernoulli polynomials and the polygamma function

are required, they are simple analogs of the identities already stated.

Proposition 3 For any positive integer k,

� 0
�
� 2k + 1;

1

2

�
=�B2k log(2)

4kk
� (22k�1 � 1)� 0(�2k + 1)

22k�1
(17)

� 0
�
� 2k + 1;

1

3

�

� 0
�
� 2k + 1;

2

3

�

9>>>=
>>>;
= � (9k � 1)B2k�p

3(32k�1 � 1)8k
� B2k log(3)

(32k�1)4k
+

�(�1)k (2k�1)(1
3
)

2
p
3(6�)2k�1

� (32k�1 � 1)� 0(�2k + 1)

2(32k�1)

(18)

� 0
�
� 2k + 1;

1

4

�

� 0
�
� 2k + 1;

3

4

�

9>>>=
>>>;
= �(4k � 1)B2k�

4k+1k
+

(4k�1 � 1)B2k log(2)

24k�1k
�

�(�1)k (2k�1)(1
4
)

4(8�)2k�1
� (22k�1 � 1)� 0(�2k + 1)

24k�1

(19)

� 0
�
� 2k + 1;

1

6

�

� 0
�
� 2k + 1;

5

6

�

9>>>=
>>>;
= �(9k � 1)(22k�1 + 1)B2k�p

3(62k�1)8k
+
B2k(3

2k�1 � 1) log(2)

(62k�1)4k
+

B2k(2
2k�1 � 1) log(3)

(62k�1)4k
� (�1)k(22k�1 + 1) (2k�1)(1

3
)

2
p
3(12�)2k�1

+

(22k�1 � 1)(32k�1 � 1)� 0(�2k + 1)

2(62k�1)
(20)
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3 Discussion

Some values of � 0(s; a) are conspicuously missing from the analysis presented.

For one, s was restricted to be a negative odd integer. Considering negative

even integers turns out not to be fruitful: the change in parity leads to terms

with di�erences of Hurwitz Zeta derivatives instead of sums of them. This

is also why closed form expressions for other rational arguments, such as

p = 1

5
, could not be possibly obtained. Summed trigonometric terms give

rise to sums of Hurwitz Zeta derivatives with alternating signs that can't

be removed with the multiplication formula or other known identities. This

fundamental problem is embodied in the following equation from [4]:

� 0(�n; x)+ (�1)n� 0(�n; 1�x) = �i
Bn+1(x)

n + 1
+ e�

�in

2

n!

(2�)n
Lin+1(e

2�ix): (21)

The presence of the (�1)n term on the left suggests that evaluating di�er-

ences of Hurwitz Zeta derivatives at negative even integers is inherently more
di�cult than evaluating them for negative odd integers.

Odd-even issues like this have deep roots in the study of Zeta functions.
For example, it has been known since Euler that the Riemann Zeta function
at positive even integers can be evaluated as a rational function of � (see

equation (4)). However, for positive odd integers, a formula is still nonex-
istent. There is also an odd-even problem with the polygamma function
 (p)(z), as demonstrated in the work of Kolbig [8], in which he gives closed-
form expressions for both sums and di�erences of the polygamma function at
several rational arguments. For polygammas of even order, the di�erence was
expressible in terms of simple constants, but the sum was not, and vice-versa

for polygammas of the negative order. The problematic term in both cases

was an in�nite series with no known formula. A related example is found
in the Clausen functions, which are also replete with symmetry mismatches
in the even and odd orders. These problems are all exact parallels of the

di�culties encountered in this paper with derivatives of the Hurwitz Zeta

function.
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